Increasing Incidence, Antimicrobial Resistance in E. coli Bloodstream Infections

Escherichia coli is an important pathogen in humans and is the most common cause of bacterial bloodstream infections (BSIs). The objectives of the study by MacKinnon, et al. (2021) were to determine factors associated with E. coli BSI incidence rate and third-generation cephalosporin resistance in a multinational population-based cohort.

The researchers included all incident E. coli BSIs (2014–2018) from national (Finland) and regional (Australia [Canberra], Sweden [Skaraborg], and Canada [Calgary, Sherbrooke, and western interior]) surveillance. Incidence rates were directly age and sex standardized to the European Union 28-country 2018 population. Multivariable negative binomial and logistic regression models estimated factors significantly associated with E. coli BSI incidence rate and third-generation cephalosporin resistance, respectively. The explanatory variables considered for inclusion in both models were year (2014–2018), region (six areas), age (< 70-years-old and ≥ 70-years-old), and sex (female and male).

The researchers identified 31,889 E. coli BSIs from 40.7 million person-years of surveillance. Overall and third-generation cephalosporin-resistant standardized rates were 87.1 and 6.6 cases/100,000 person-years, respectively, and increased 14.0% and 40.1% over the five-year study. Overall, 7.8% (2483/31889) of E. coli BSIs were third-generation cephalosporin-resistant. Calgary, Canberra, Sherbrooke, and western interior had significantly lower E. coli BSI rates compared to Finland. The significant association between age and E. coli BSI rate varied with sex. Calgary, Canberra, and western interior had significantly greater odds of third-generation cephalosporin-resistant E. coli BSIs compared to Finland. Compared to 2014, the odds of third-generation cephalosporin-resistant E. coli BSIs were significantly increased in 2016, 2017, and 2018. The significant association between age and the odds of having a third-generation cephalosporin-resistant E. coli BSI varied with sex.

Increases in overall and third-generation cephalosporin-resistant standardized E. coli BSI rates were clinically important. Overall, E. coli BSI incidence rates were 40–104% greater than previous investigations from the same study areas. Region, sex, and age are important variables when analyzing E. coli BSI rates and third-generation cephalosporin resistance in E. coli BSIs. Considering E. coli is the most common cause of BSIs, this increasing burden and evolving third-generation cephalosporin resistance will have an important impact on human health, especially in aging populations.

Reference: MacKinnon MC, et al. Increasing incidence and antimicrobial resistance in Escherichia coli bloodstream infections: a multinational population-based cohort study. Antimicrobial Resistance & Infection Control. Vol. 10, article number 131, 2021.