Infection Prevention

Navigating COVID-19’s Ongoing Challenges: A Perspective From the Front Lines of Infection Prevention

By Phenelle Segal RN, CIC, FAPIC

This column originally appeared in the August 2020 issue of Healthcare Hygiene magazine.

In a pre-COVID 19 world, August is the height of summer vacation for millions of Americans. People enjoy backyard barbecues, swimming parties, fun at the beach, traveling and organizing family reunions as the nation enjoys a much-needed reprieve from cold temperatures and long work hours. The summer of 2020 is very different as it continues to reveal a tumultuous and unprecedented pandemic. COVID-19 continues to follow the trajectory of an out of control respiratory-spread virus, that has the power to sicken and kill many Americans within a short period of time. Besides the tragic toll on human lives, COVID-19 continues to affect the economy and threatens healthcare facilities and workers with no end in sight. The ongoing challenges we face is evident including severe shortages of personal protective equipment (PPE) and disinfectant products among many others.

Ongoing Challenges in Healthcare Facilities
Over the course of five months, infection preventionists -- after planning and preparing as best as possible -- were unaware of the impact an out-of-control, highly transmissible respiratory virus could have on a system-wide basis. Prior pandemics including SARS, H1N1, MERS and Ebola revealed the need to stay on top of surge capacity plans in the event of a “COVID-19 catastrophe. However, in line with other natural disasters, we had no idea when it would strike, what type of disease would attack and how much of an impact it would have. We were always aware that our efforts to plan for the “big one,” may fall short of the needs as the unknown would deliver its punches. Decades of developing, implementing, and educating on “best practices” have abruptly halted as infection preventionists and healthcare educators scramble to prioritize and use best judgment, while guiding facilities across the continuum of care. The frustration in having to let go of routine practices is daunting, but infection preventionists must be flexible in an ever-changing environment. This article will address two ongoing critical challenges as we continue striving in a nontraditional fashion to strive for staff and patient safety.

Personal Protective Equipment (PPE) Shortage
Filtering face-piece respirators (FFRs) including but not limited to N95 respirator masks are critical items in the prevention of COVID-19 spread and other aerosol transmissible diseases. They remain in ongoing short supply throughout the nation. FFRs protect the user by filtering particles out of the air that is being breathed by the users. The National Institute for Occupational Safety and Health (NIOSH) the federal agency responsible for conducting research and making recommendations for the prevention of work-related injury and illness has seven classes of FFRs approved with a ninety-five percent minimum level of filtration (95 percent). Masks that filter less than 95 percent of particles are not guaranteed to be as effective as those that filter 95 percent or more. NIOSH works in conjunction with the Occupational Health and Safety (OSHA) agency that regulates respiratory programs for healthcare workers.

N95 masks are the traditional FFR used in hospitals for healthcare personnel taking care of patients requiring airborne isolation. The most common use has been for patients with aerosol transmissible diseases including pulmonary tuberculosis (TB). They are manufactured and sold as “single use only” and until COVID-19, there was no shortage of these items.

In response to the increased demand for use as thousands of cases were occurring in the hot zones in March and April, the Food and Drug Administration (FDA) released Emergency Use Authorizations (EUAs) for companies that had developed a “mask reprocessing” system to decontaminate N95s for reuse. Only N95 masks can be decontaminated but is dependent on the manufacturer and products used. Some N95 masks are not compatible with reprocessing such as those made with cellulose. In addition, the Centers for Disease Control and Prevention (CDC) issued guidance for reuse and extended use of single use FFRs. To date, facilities are reprocessing N95 masks via authorized methods and strictly follow the manufacturer of the mask as well as the decontamination equipment’s instructions for use. These methods are primarily using hydrogen peroxide in various forms, but with limited numbers of reprocessing cycles (based on the type of equipment) before having to discard them.

Infection preventionists continue to work with facilities that cannot reprocess masks and one of the CDC recommendations for extending the “life of the mask” is to place them in a brown paper bag or other breathable container for at least 72 hours before wearing them again. Facilities are providing a limited number of N95 masks to employees at most risk. That includes healthcare workers caring directly for COVID-19 positive and those providing aerosol generating procedures (AGPs) such as anesthesiology personnel. Staff are wearing surgical masks over their N95 masks to prevent them from becoming decontaminated. Face shields are thought to provide some protection from becoming contaminated too. Reuse and disinfection techniques are neither simple, nor ideal, but at this juncture, the choices are limited. It is important to note that masks must be discarded if they are visibly soiled, damaged or become moist/wet as they will not function effectively.

OSHA (29 CFR 1910.134) requires a medical evaluation, fit-testing and training prior to use of N95 masks performed initially (before the employee is required to wear the N95) followed by annual fit testing prior to COVID-19. However, OSHA did provide Temporary Enforcement Guidance in response to COVID-19 and despite the temporary guidance, challenges with lack of availability of appropriate sizes for staff members and short supply of solution for the fit test kits continues. A self-administered seal check should be performed before donning the masks.

Additional FFRs have been authorized by NIOSH for use including but not limited to “Surgical N95 respirators” and Powered Air Purifying Respirators (PAPRs). PAPRs do not have to be fit tested. Lastly, hospitals have turned to reusable elastomeric non-powered air-purifying half facepiece (half mask) manufactured to be reused, which has distinct advantages. They also need a fit test prior to first use.

Disinfectant Product Shortage
Coronaviruses are enveloped viruses and hence are extremely easy to kill using the appropriate disinfectant. Novel coronaviruses are unable to achieve a viral claim in a short amount of time and usually companies take a year or more to complete testing. Due to the length of time it takes to achieve this claim, the U.S. developed a policy based on a hierarchy for companies, meaning that if a product is effective against “harder to kill viruses, it is likely to kill COVID-19”. Harder to kill viruses include the non-enveloped group including norovirus, poliovirus, rhinorvirus, feline and reovirus.

Shortly after the pandemic was recognized as a potential threat as well as the emphasis placed on the size of COVID-19 droplets and the ability to settle on surfaces, disinfectant products became difficult to obtain as the demand outweighed the supply. This included online and in-store purchases as well as manufacturers and distributors running out of product. In response to the importance of surface disinfection and product shortages, the Environmental Protection Agency (EPA) developed an extensive list of products shortly after COVID-19 was exponentially spreading. Known as the EPA’s “List N: Disinfectants for Use Against SARS-CoV-2 (COVID-19), it is constantly updated, and new products are being added. Facilities are encouraged to check the list regularly.

Hospitals continue to face shortages of disinfectant wipes and liquid with no immediate “return to normal” for availability of supplies. Manufacturers are developing creative strategies to provide product to healthcare facilities as a priority. The public has very limited access to supplies on shelves, with a one per person limit in most stores. Online purchase of products are prioritized for healthcare facilities only and the public does not have access to them.

Extreme shortages are occurring in non-acute care-based healthcare facilities at a higher rate than acute care hospitals. The primary reason in the non-hospital- based facilities is due to the product manufacturers prioritizing distribution based on previous use. Acute care hospitals use disinfectants on a much larger scale than non-acute based facilities. Manufacturers are reviewing order history together with supply when determining which facilities receive products and the quantity allocated.

Five months into the pandemic, with record numbers of cases appearing in many states and no end in sight, infection prevention challenges will continue to arise. It is incumbent upon us as healthcare providers, to face these hard times with strength, skill and perseverance as we continue to work at providing the support, strength and structure to our colleagues and patients.

Phenelle Segal, RN, CIC, FAPIC, is president of Infection Control Consulting Services.

Under-Addressed Risk Factors for COVID-19 and Future Pandemics

By Sue Barnes, RN, CIC, FAPIC

This column originally appeared in the July 2020 issue of Healthcare Hygiene magazine.

We have learned much about critical risks factors that lead to global transmission of novel respiratory viruses, including the current COVID-19 pandemic as well as those in the past. This must in turn, inform our preparedness for future pandemics. The risk factors include a lack of herd immunity for novel viruses, inadequate/untimely transnational communication and collaboration when novel virus is first identified, inadequate stores of personal protective equipment, viral qualities such contagiousness and modes of transmission (e.g., coughing, sneezing, face touching, and contact with contaminated surfaces). Especially during the current pandemic, there is tremendous focus placed on mitigation strategies for each of these risk factors. However, there are two additional risk factors which have received less attention during the current and past pandemics. These are: 1) the infection transmission risk posed by pre-school and school-aged children and 2) the risk posed by Asian mixed wild animal wet markets, both in introducing novel viruses as well as transmitting them.

The Role of Pre-School and School-Aged Children
Young children often play a significant role in transmission of respiratory viruses including pandemic influenza (flu) and the current novel coronavirus SARS CoV2 which causes COVID-19 infections.1 Given that respiratory viruses are found in the nose and throat, and children frequently touch their noses, eyes and mouths, share objects that have been put in their mouths, and have physical contact during play, these viruses are easily transmitted among children and with parents, teachers and caregivers. Transmission then continues with contacts of the parents, teachers and caregivers. Exacerbating the current pandemic is the lack of immunity to this novel virus in both adults and children. And even with seasonal flu, young children may not have pre-existing herd immunity.2

Containing the transmission of pandemic flu and other respiratory viruses including SARS CoV2, posed by young children within our global population, will require ongoing education of children, parents and caregivers. The education must include information and training regarding hand hygiene, face coverings, environmental disinfection and physical distancing. It must also include sufficient sourcing of supplies (e.g. masks/face coverings, hand sanitizer, environmental disinfectant) to ensure that these are ubiquitous. Adequate annual influenza vaccination of all three groups, children, parents, and teachers will continue to be critical, in addition to SARS CoV2/COVID-19 vaccination when it becomes available. Nasal antiseptics as part of daily hygiene for children, teachers and caregivers would be arguably an added advantage providing an extra layer of safety. This type of product has been used successfully in healthcare to reduce infections by bacteria residing in the nose.3 Studies are needed to determine if nasal antiseptics can similarly reduce the risk of respiratory viral infections as well, but it is a good bet since respiratory virus is more easily inactivated than bacteria.4 Temperature screening, mask wearing for middle school, and physical distancing strategies, such as smaller class sizes, with rotation of students between in person classrooms and distance learning strategies may also be important in reducing the contribution of respiratory viral transmission by young children.5 Read more here:6

The Role of Live Animal Wet Markets in Asia
Asian wet markets where live animals are sold have been proposed or confirmed as the source of a number of pandemics including Asian Flu 1957, Hong Kong Flu 1968, SARS CoV1 2003 and SARS CoV2 2019.7 These markets create a perfect environment for the introduction and transmission of novel viral pathogens, where wild animals of many types from all over the world are brought into close contact which would never happen in the natural world.
The animals in the market are packed together for days and sometimes longer and are often slaughtered in the market where blood and body fluids are generated, and many humans are gathered. This is where viral pathogens can be transmitted between species and then to humans. This is especially true mainland China where the markets have many kinds of animals – some wild, some domesticated and not always native. These animals are stressed in crowded captivity among humans resulting in reducing their natural immunity and facilitating viral transmission, and with genetic mixing, novel viral strains. There are many types of wet markets in Asia, only the type described posing the greatest risk. There also many challenges to reducing or eliminating them including culture and tradition.8 Read more at:

The elimination of all wet markets would not be a practical or reasonable approach, which would be like prohibiting all farmers markets in the U.S. However, reducing or eliminating live animal wet markets in mainland China should be considered, given the morbidity and mortality resulting from the pandemics which continue to be generated from such markets.9-11

Sue Barnes, RN, CIC, FAPIC is an independent clinical consultant, Board certified in Infection Control and Prevention, a Fellow of APIC (FAPIC) and co-founder of the National Corporate IP Director Network. She currently provides marketing and clinical consultation to select industry partners who seek to support infection prevention with innovative products.

1. Mimura S, Kamigaki T, Takahashi Y, Umenai T, Kudou M, Oshitani H. Role of Preschool and Primary School Children in Epidemics of Influenza A in a Local Community in Japan during Two Consecutive Seasons with A(H3N2) as a Predominant Subtype. PLoS One. 2015;10(5):e0125642. Published 2015 May 5. doi:10.1371/journal.pone.0125642
2. Miller E, Hoschler K, Hardelid P, Stanford E, Andrews N, Zambon M. Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study. Lancet. 2010 Mar 27; 375(9720):1100-8. doi:10.1016/S0140-6736(09)62126-7.
3. Mullen A et al. Perioperative participation of orthopedic patients and surgical staff in a nasal decolonization intervention to reduce Staphylococcus spp surgical site infections. American Journal of Infection Control. 45 (2017) 554-6.
4. Osborne K. Viruses, bacteria and fungi. Virox animal health online. October 31, 2017. accessed June 13, 2020.

5. United Nations Educational, Scientific and Cultural Organization (UNESCO) accessed June 13, 2020.
6. CDC Considerations for Schools accessed June 13, 2020.
7. Webster RG. Wet markets--a continuing source of severe acute respiratory syndrome and influenza? Lancet. 2004;363(9404):234‐236. doi:10.1016/S0140-6736(03)15329-9.
8. Woo PC, Lau SK, Yuen KY. Infectious diseases emerging from Chinese wet-markets: zoonotic origins of severe respiratory viral infections. Curr Opin Infect Dis. 2006;19(5):401‐407. doi:10.1097/01.qco.0000244043.08264.fc.
9. Beaubien J. Why They're Called 'Wet Markets' — And What Health Risks They Might Pose. January 31, 2020. NPR online accessed June 13, 2020.
10. Kawaoka Y, Krauss S, Webster RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol. 1989 Nov; 63(11):4603-8. accessed June 13, 2020.

Infection Prevention Guidance for the Hotel Industry During COVID-19

By Carol McLay, DrPH, MPH, RN, CIC, FAPIC

This column originally appeared in the June 2020 issue of Healthcare Hygiene magazine.

The current COVID-19 outbreak is placing unique psychological stress points on the nation’s healthcare workers (HCWs). Previous research has shown that epidemics can cause severe psychological effects. A recent review of the mental health problems faced by HCWs during this pandemic suggests that HCWs are experiencing considerable stress, anxiety, depression and insomnia.1

Reasons for these adverse psychological outcomes range from excessive workload and work hours, making difficult decisions about how to conserve limited personal protective equipment (PPE) and prioritize treatment, anxiety over putting their families at risk for exposure to the virus, and confronting a mounting death rate.

With their extended work hours and close contact with COVID-19 patients, health care workers have expressed anxiety about safe accommodations. Some workers have long commutes and need a place close by to rest and regenerate. Many worry that they may expose their families to the virus when they return home.

Temporary housing options help to support the mental health needs of staff. Healthcare facilities are creating partnerships with local hotels, universities and rental properties to offer accommodation to healthcare workers.

Hotel rooms for healthcare workers are provided at no-cost through the Rooms for Responders program offered by Marriott Bonvoy, in collaboration with American Express and JPMorgan Chase.2 Hilton and American Express are donating up to 1 million hotel rooms to individual front-line medical professionals during the COVID-19 crisis.3

The American Hotel & Lodging Association (AHLA) has developed the “Hospitality for Hope Initiative” to enhance collaboration between the hotel industry and the health care community, first responders, and local communities.4 As part of the initiative, AHLA is working closely with the Department of Health and Human Services (HHS) to create a national database of hotel properties willing to provide temporary housing for emergency and healthcare workers. At the time of writing, more than 17,000 properties have agreed to participate, offering 2.3 million rooms to our healthcare heroes.

In preparation for hosting HCWs, hotel managers and staff should take precautions to improve guest and employee health and safety.

General guidelines include:
- Follow local/state public health recommendations
- Reinforce personal hygiene throughout your hotel
- Place signage and floor markers in lobby, elevator landings, restaurant areas and other communal areas displaying appropriate physical distancing and health and hygiene reminders.
- Provide hygiene materials such as hand sanitizer in strategic locations such as entrances, elevator landings, fitness centers, restaurants, ice and vending machines.
- Utilize disinfectants that are effective against SARS-CoV-2, the virus that causes COVID-19. (See the EPA’s List N: Disinfectants for Use Against SARS-CoV-2 for a list of approved disinfectants, at:
- Post a list of precautions that your property will be taking to ensure that both guests and employees will remain safe during this period.
- Consider housing HCWs on a separate wing or section of the hotel reserved for this workforce

Specific Guidelines for Procedural Implementation
• Consider requiring employees to wear a mask in public areas at all times.
• Consider screening all employees upon arrival to work. Screening questions include:
1. Do you have any flu-like symptoms such as fever, cough or shortness of breath?
2. Have you been around anyone that is positive for COVID-19?
If an employee answers yes to any of the above, have them return home and call their healthcare provider.
• Employees must sanitize hands upon entry of hotel and frequently during their shift.
• Provide employee education about COVID-19 fundamentals such as signs and symptoms, mode of transmission, and prevention strategies to reduce spread including importance of hand hygiene.
• Ensure communications are culturally and linguistically appropriate.
• Train staff to use disinfectants safely and correctly. Staff should wear gloves when cleaning. Follow the manufacturer’s recommendations for proper use of disinfectants; for example, if the product has a 30-second contact time, this means that surfaces must stay wet for 30 seconds to be effective.
• Clearly communicate leave policies for planned and unplanned absences; provide guidance and support for childcare and elder care.
• Implement policies to reduce the frequency and type of face-to-face contact among employees (e.g., hand shaking, shared work areas, break room); ensure employees maintain 6 feet of distance between other employees and guests.
• Closely monitor employee health. Reinforce personal hygiene and cough etiquette.
• Provide hand sanitizer stations and tissues to all employees and guests.
• Consider requiring all guests to wear a mask in public areas at all times.
• Encourage guests to sanitize hands on entry to hotel.
Beverage service
• No self-service, front desk staff to provide coffee/tea service upon request.
Guest rooms
• Request that all guests exit room while room is being cleaned.
• Thoroughly clean and disinfect all hard surfaces, pay particular attention to high touch surfaces (see section below on specific touch surfaces).
• Do not reuse cleaning clothes between rooms, use disposable cloths/wipes if possible
• Remove bed scarves from service.
• Wash bedspreads/comforters between each guest.
• Remove minibar snacks and beverages from guest rooms, have available upon request.
Public restrooms
• Clean and disinfect public restrooms on a frequent basis.
• Use disposable wipes if possible.
Business center
• Restrict access to ensure social distancing.
• Disinfect after each use, including wiping of keyboard and other high touch surfaces.
Fitness facility
• Follow local guidance and adhere to strict physical distancing and sanitation protocols.
• Ensure guests have access to disinfection wipes.
• Frequent disinfection.
Public laundry facility
• Restrict access to one guest/family at a time.
• Disinfect laundry room after each use.
• Linen may become contaminated with the virus. Employees should handle contaminated linen as little as possible with minimal agitation.
• Wash items in accordance with the manufacturer’s instructions using the hottest appropriate water setting; dry items completely.
• Ensure disinfectant is added to laundry wash.
• Clean and disinfect hampers or other carts for transporting laundry.
Dining room
• Follow local/state/federal regulations.
• Provide Grab and Go or pre-wrapped options.
• No self-service food/beverage stations.
• Update floor plans to allow for table configurations no less than 6 feet in proximity to other tables.

Specific Touch Points

Lobby and common areas
• Check-in desk
• Door handles, push plates, hand railings
• Countertops
• Telephone and keypad
• Tables and chairs
• Trash receptacle touch points
• Elevator buttons
Public restrooms
• Door handles
• Sink faucets and toilet handles
• Soap dispenser handle
• Towel dispenser
• Baby changing station
• Trash receptacle touch points
Guest rooms
• Door handles
• Desk, tables, chair, lamps
• Dresser drawer handle
• Drapery pull handles
• Mini-bar, menu, coffee maker
• Light switches and thermometers
• Telephone and keypad, remote control, and alarm clock
• Television
• Make up mirror, hand dryer
• Trash receptacle touch points
• Handles to clothes cupboard, hangers, luggage rack
Ice/vending machines
• Frequent disinfection of door handles, keypads, buttons

It is critical to ensure the health and safety of this essential workforce and the hotel industry is uniquely positioned to support our HCWs who are on the frontlines of this public health crisis. Providing a safe, clean and comfortable hotel room to our exhausted workers after another grueling shift provides much needed physical and psychological support and safety. In addition, this provides hotels a means to keep their doors open and give back during this time of crisis.

By supporting and addressing the social needs of the healthcare workforce, hospitals continue to show their commitment and dedication to keeping Americans safe and healthy.

Carol McLay, DrPH, MPH, RN, CIC, FAPIC, is the CEO of Infection Control International and is a consultant in the fields of healthcare epidemiology, infection prevention and control, and public health.

1. Spoorthy M.S, Pratapa SK and Mahant, S. (2020). Mental health problems faced by healthcare workers due to the COVID-19 pandemic-A review. Asian Journal of Psychiatry. 51, 102119. Advance online publication:

2. Rooms for Responders. Available at:
3. Hilton and American Express Program. Available at:
4. Hospitality for Hope. Available at:


COVID-19: The Journey From Mitigation to the ‘New Normal’

By Phenelle Segal, RN, CIC, FAPIC

Editor's note: This column originally appeared in the May 2020 issue of Healthcare Hygiene magazine.

In early January, clinicians in the United States were alerted to cases of a respiratory illness occurring since late December 2019 in dozens of patients from Wuhan, China. Clinicians were told to closely evaluate patients with symptoms and a history of recent travel to and from the affected area. On Jan. 21, 2020 the Centers for Disease Control and Prevention (CDC) officially confirmed the first case of a novel coronavirus in the state of Washington; the patient had returned from Wuhan on Jan. 15 and presented to a medical facility there. Due to his history of travel and respiratory symptoms, a new coronavirus illness was suspected, and a Real time Reverse Transcription-Polymerase Chain Reaction (rRT-PCR) test was run and confirmed the medical center’s suspicion. Within a month from first hearing about the initial cases, the world began experiencing the unprecedent 2019 Novel Coronavirus (2019-nCoV) pandemic.

When first identified in Wuhan, the virus was thought to spread from animal to humans, with no evidence that it was spreading from human to human. Like previous coronavirus organisms, COVID-19 appeared to originate in a poultry and seafood market during the latter part of 2019. The source was unclear with bats and pangolins highly suspected. Upon reaching the U.S., it was becoming more evident that person-to-person spread was a concern in China, but its rate and ability to spread remained unclear.

Healthcare facilities, particularly acute-care hospitals were overrun by sick patients, many of them requiring intensive care treatment with or without the use of a ventilator. Very ill patients have had a prolonged clinical course and delayed discharge due to an unprecedented list of clinical conditions. The huge influx of patients resulted in a tremendous shortage of personal protective equipment (PPE) and ventilators. The shortages were dependent on the region and directly proportional to the number of cases. After several weeks of frenzied care provided to hundreds of thousands of ill patients, many healthcare workers were and continue to be stricken with COVID-19 and several deaths have occurred.

Initial Mitigation Steps
Since CDC first heard of a surge in cases in Wuhan, the agency began preparing as best as possible, aware of the fact that it was a matter of time before the U.S. would see an influx. In conjunction with the White House, the following steps were taken and several remain in place to date:
• Developed an alert system for healthcare providers from the beginning of January.
• Provided guidance to clinicians about signs and symptoms as they were identified from Wuhan, and requesting they be alert for a positive travel history to and from potentially infected countries.
• Provided viral testing guidance.
• Provided preliminarily guidance for the care of patients in the home who may develop COVID-19.
• Provided guidance for airport screening of passengers coming into several major international airports.
• Assisted with developing a diagnostic test to detect this virus in clinical specimens.
• Activated its Emergency Operations Center to prepare for future support to healthcare providers.
• Deployed a team to Washington state to begin contract tracing and other support.
• Ordered each state to issue executive orders to shut down non-essential businesses, public gatherings, sports events, entertainment and stay at home orders.
• Ordered outpatient healthcare providers to cease providing non-urgent/non-emergent services including elective surgeries.
• Implemented social distancing strategies to curb the spread from close contact.
• Banned hospitals and nursing homes from visitors.
• Issued guidance for healthcare facility employees, vendors and essential persons to universally mask while in the building.
• Suggested individual states and counties implement face coverings for the general public.
Ongoing Mitigation
• Guidance was and continues to be released at an accelerated rate for the community and healthcare industry.
• Ongoing updates from many sources were and continue to be very helpful in developing plans for healthcare facilities.
• CDC deployed additional personnel to “hot zones”.
• Conference calls for healthcare providers and community were set up and continue to take place.
• Guidance provided for agencies and companies developing additional tests including antibody tests.
• Guidance for companies and agencies reviewing and trialing medications to treat ill patients.
• Providing input for agencies and companies researching vaccine development.

Returning to the New Normal
Three months into the pandemic, the White House has introduced guidelines to reopen the country using a three-phased approach. Besides other industries, the first and second phase includes resuming outpatient and inpatient elective surgery respectively. Visitor bans will continue to be strictly upheld during phase one and for the most part phase two for hospitals and nursing homes. Every state will need to develop “reopening plans,” which is expected to be extremely challenging and will require a multi-disciplinary team approach.

Outpatient surgery centers are closed to elective procedures with urgent or emergent procedures allowed at the discretion of the medical providers. Elective procedures are on hold in hospitals too. During the ban of elective procedures, staff were responsible for developing initial plans for screening patients and physical distancing protocols. In addition, outpatient centers were asked to develop plans for possible conversion to COVID-19 bed use and anesthesia machines for the purpose of ventilating patients. PPE was to be preserved and in certain regions, sent to hospitals for front line staff to use during care of infected patients.

Roadmap for Resuming Elective Surgery After COVID-19 Pandemic

In late April, a joint statement was released by the American College of Surgeons, American Society of Anesthesiologists, Association of periOperative Registered Nurses and the American Hospital Association. The following is a list to guide surgery centers and hospitals for resuming procedures :

• Timing for Reopening of Elective Surgery – Reopening should be considered only after a sustained reduction in the rate of new COVID-19 cases in the relevant geographic area for at least 14 days.
• COVID-19 Testing within a Facility – Facilities should use available testing to protect staff and patient safety whenever possible and should implement a policy addressing requirements and frequency for patient and staff testing.
• Personal Protective Equipment – Facilities should not resume elective surgical procedures until they have adequate PPE and medical/surgical supplies appropriate to the number and type of procedures to be performed.
• Case Prioritization and Scheduling – Facilities should establish a prioritization policy committee consisting of surgery, anesthesia and nursing leadership to develop a prioritization strategy appropriate to the immediate patient needs.
• Post-COVID-19 Issues for the Five Phases of Surgical Care – Facilities should adopt policies addressing care issues specific to postponement of surgical scheduling related to COVID-19
• Collection and Management of Data – Facilities should reevaluate and reassess policies and procedures frequently, based on COVID-19 related data, resources, testing and other clinical information.
• COVID-related Safety and Risk Mitigation surrounding Second Wave – Facilities should have and implement a social distancing policy for staff, patients and patient visitors in non-restricted areas in the facility which meets then-current local and national recommendations for community isolation practices.
• Additional COVID-19 Related Issues including:
 Healthcare worker well-being: post-traumatic stress, work hours.
 Patient messaging and communication.
 Case scheduling process.
 Facility and OR/procedural safety for patients.
 Preoperative testing process for COVID-19-positive and non-COVID-19-positive patients.
 Environmental cleaning.
 Prior to implementing the start-up of any invasive procedure, all areas should be terminally
cleaned according to evidence-based information.
 In all areas along five phases of care (e.g. clinic, preoperative and OR/procedural areas,
workrooms, pathology-frozen, recovery room, patient areas, ICU, ventilators, scopes,
sterile processing, etc.)
 Regulatory issues (The Joint Commission, CMS, CDC).
 Operating/procedural rooms must meet engineering and Facility Guideline Institute standards for air exchanges.
 Re-engineering, testing, and cleaning

Pandemics are like natural disasters; their timing and magnitude is unpredictable. COVID-19 arrived precipitously, spread rapidly and quickly overwhelmed the nation. History has proven that respiratory viruses don’t disappear and often linger for a few years or an effective vaccine is developed. H1N1 in 2009 lingered for approximately three years. A vaccine was developed and was introduced as a component of the annual flu. COVID-19 vaccine development has begun, but the outcomes remain unknown at this juncture.

The “new normal” is beginning to take shape. Facilities across the continuum of care are working through the challenges of realigning compromised infection prevention “best practices. Patient safety and prevention of transmission of hospital-acquired conditions, while temporarily disrupted, remains unchanged. Healthcare professionals have spent decades improving hand hygiene, disinfecting the environment, appropriate isolation of potentially transmissible patients and more. These “best practices” will require reeducation and training sooner than later as healthcare services resume.

Phenelle Segal, RN, CIC, FAPIC, is president of Infection Control Consulting Services.

The Role of Infection Preventionists in Antibiotic Stewardship Programs

By Sue Barnes, RN, CIC, FAPIC

This column originally appeared in the April 2020 issue of Healthcare Hygiene magazine.

Since their introduction in the 1940s, antibiotics have greatly reduced illness and death from all types of infections caused by bacteria. However, overuse has led to development of bacterial resistance, making the drugs less effective and creating bacteria that is more difficult to treat. Each year in the United States, at least 2 million people become infected with bacteria that are resistant to antibiotics, and 23,000 people die as a direct result of these infections.1 To promote the appropriate use of antibiotics, antibiotic/antimicrobial stewardship programs (ASP) have been implemented in hospitals nationwide, and are required by the Joint Commission and the Centers for Medicare and Medicaid.2 These programs are making progress in reducing resistance, and the incidence of infections caused by multidrug-resistant organisms. In addition, the appropriate use of antibiotics also serves to reduce the incidence of Clostridium difficile infections (C. diff), caused in part by the disruption of helpful intestinal bacteria.1

Various perspectives have been offered regarding the role of the infection preventionist (IP) in ASP. A 2019 paper published in AJIC on the subject suggests that “the absence of a clear role definition for IPs in ASPs is likely hindering IPs from contributing in consistent, meaningful ways.”3 This was written subsequent to publication of two key Association for Professionals in Infection Control and Epidemiology (APIC) documents, suggesting that there is still work to do to clarify the role of the IP in ASP. The updated APIC-Society for Healthcare Epidemiology of America (SHEA) position paper on the role of the IP in ASP, published in 2018, proposes the following ASP related functions for IPs: 4
1. Leadership commitment: Infection prevention and control (IPC) and antimicrobial stewardship (AS) program leaders must work together to align their programs, promoting communication and collaboration, and reducing the likelihood of redundant initiatives.
2. Action: IPs can leverage strong collegial relationships to influence and facilitate nursing’s supporting role in initiating antibiotic timeouts, performing antibiotic reconciliation during patient transitions of care, and educating patients and families.
3. Tracking: IPC programs perform surveillance for emerging pathogens and resistance patterns, as well as rapid response to every possible transmission.
4. Reporting: IPC programs are responsible for HAI surveillance and providing feedback of infection rates (e.g., multidrug-resistant organisms and Clostridioides difficile/CDI) and audit data (e.g., hand hygiene adherence) to clinicians and other stakeholders. CDI prevention is a high priority for IPC and AS programs, so sharing and disseminating antibiotic use and CDI infection rates is essential to prevention efforts.
5. Education: Some specific examples include providing education to frontline healthcare workers regarding the appropriate collection of urine cultures, cultures from endotracheal tubes, and indications for testing for CDI infections.
6. Diagnosis: It is essential for IPs, HEs, and the AS team to understand the scope of rapid diagnostic tests and work together to assist clinicians in interpreting and responding appropriately to results.

The second APIC paper published in 2019 was “Advancing the profession: An updated future-oriented competency model for professional development in infection prevention and control,” proposed the following actions for the IP role in ASP:5
1. providing consultative expertise
2. being a leader and advocate
3. identifying and detecting multidrug-resistant organisms
4. reporting surveillance trends over time
5. using surveillance data (e.g., treating asymptomatic bacteriuria, collecting contaminated specimens)
6. analyzing antibiograms and antibiotic use
7. assisting with early organism and infected patient identification
8. promoting compliance with standard and transmission-based precautions and other infection prevention strategies, such as care bundle practices and hand hygiene
9. developing and providing educational programs for staff, patients, and visitors

Other experts have recommended additional activities which arguably would cross the boundary into the competencies of other departments. For instance, participating in the production of the antibiogram as well as providing associated training, would seem to cross the boundary into responsibilities/competencies of the laboratory scientist.6,7 Also suggested to be within the purview of the IP is identifying bug-drug mismatches (i.e., whether a prescribed antibiotic is effective based on bacterial sensitivities). This would seem more within the purview of the pharmacist and physician.7-9

Not mentioned in any of these papers is arguably the most significant role for IPs in antibiotic stewardship programs – the prevention of healthcare-associated infections (HAIs). For every infection prevented, there are fewer antibiotics administered in addition to the associated resistance pressure, CDI risk, incidence, associated patient morbidity and healthcare cost. The APIC publications provide a high-level overview of the role of the IP in ASP, which can be built upon at the local level to provide more specific actions. Ongoing updates will be required moving forward due to the dynamic nature of the responsibilities of the IP.

Sue Barnes, RN, CIC, FAPIC is an independent clinical consultant, Board certified in Infection Control and Prevention, a Fellow of APIC (FAPIC) and co-founder of the National Corporate IP Director Network. She currently provides marketing and clinical consultation to select industry partners who seek to support infection prevention with innovative products.

1. CDC Web page Antibiotic/Antimicrobial Resistance (AR/AMR)
2. Dall C. New rule requires antibiotic stewardship programs in U.S. hospitals. Center for Infectious Disease Research and Policy; Sept. 26, 3019.
3. Weissenbach M. et al. Exploring the role of infection preventionists in antimicrobial stewardship programs through several lenses: A brief report. Am J Infect Control. 48 (2020) 106-107.
4. Manning, M et al. Antimicrobial stewardship and infection prevention—leveraging the synergy: A position paper update. A J Infect Control. Volume 46, Issue 4, 364 – 368.
5. Billings C et al. Advancing the profession: An updated future-oriented competency model for professional development in infection prevention and control. Am J Infect Control. 47 (2019) 602-614.
6. Moehring R et al. Challenges in Preparation of Cumulative Antibiogram Reports for Community Hospitals; J Clin Microbiol. Aug 2015, 53 (9) 2977-2982.
7. Perri L. The Infection Preventionist's Role in Antimicrobial Stewardship Programs. Infection Control Today. Oct. 6, 2017.
8. Al-Homaidan HT, Barrimah IE. Physicians' knowledge, expectations, and practice regarding antibiotic use in primary health care. Int J Health Sci (Qassim). 2018;12(3):18–24.
9. Duggan C, Joynes R, Rosado H. Pharmacy’s role in antimicrobial resistance and stewardship. Clinical Pharmacist. June 5, 2018.

Outbreak Readiness: How Prepared is Your Facility?

By Phenelle Segal, RN, CIC, FAPIC

Editor's note: This column originally appeared in the March 2020 issue of Healthcare Hygiene magazine.

For at least two decades, the U.S. has been planning for inevitable global pandemics, as evidenced by doubling of the National Institutes of Health (NIH) budget for biomedical research in 1998. The President’s Emergency Plan for AIDS Relief (PEPFAR) was created to stem the rising fear of devastation from Human Immunodeficiency Virus (HIV). However, health crises such as severe acute respiratory syndrome (SARS) that emerged in 2002, and Ebola in 2014, the U.S. response, together with the rest of the world, was considered slow and not well organized. Ebola proved that if basic systems had been in place, the epidemic could have been aborted at almost no cost, compared to the $5.4 billion that the U.S. funded.

Curbing epidemics is complex and requires a combination of money, additional manpower and with modern technology, the ability to diagnose, treat and prevent these diseases should be simpler.1

This article focuses on improvements nationwide for pandemic preparedness using Ebola’s arrival in the U.S. in 2014. Ebola Virus Disease (EVD) created an urgent need for pandemic preparation when the primary patient responsible for introducing the virus into the country fell through the cracks after his initial visit to a hospital in Texas. Ebola preparedness placed a heavy financial and human resource burden on healthcare facilities across the nation. Acute-care hospitals were provided guidance by the Centers for Disease Control and Prevention (CDC) via their “Interim Guidance for Preparing Frontline Healthcare Facilities for Patients Under Investigation (PUIs) for Ebola Virus Disease (EVD).” CDC guidance also included a detailed checklist for hospitals and specified that this could be used for Ebola as well as other infectious diseases. The result was much-improved awareness and preparedness for the inevitable; however, the question remains whether the healthcare industry can ever be fully prepared?

Novel respiratory viruses including severe acute respiratory syndrome (SARS Co-V) in 2003, H1N1 influenza (swine flu) in 2009 and Middle East respiratory syndrome (MERS Co-V) in 2012 reminded the world that ongoing preparation -- particularly in the acute-care setting -- is vital to the success of preventing an outbreak of major magnitude.

Once again, the U.S. currently faces the threat of a respiratory virus outbreak with the novel coronavirus known as COVID-19 that originates from and has sickened tens of thousands of people in China. The death toll has surpassed 1,500 at the time of writing. Similar to SARS and MERS, most often the virus spreads from respiratory droplets as a person-to-person transmission, when a person who is infected sneezes or coughs within the space of approximately 6 feet of others. As this novel virus has many unanswered questions to date, it is not certain whether surface contamination can infect mucus membranes including the mouth, nose or eyes.

Are We Prepared?
In October 2018, the U.S. Department of Health and Human Services (HHS), Office of Inspector General (OIG) released a report, “Hospitals Reported Improved Preparedness for Emerging Infectious Diseases After the Ebola Outbreak.” The OIG found that most acute-care hospitals in the nation were unprepared for the outbreak of Ebola in 2014, “…with 71 percent of hospital administrators reporting that their facilities were unprepared to receive Ebola patients. By 2017, administrators from only 14 percent of hospitals reported their facilities were still unprepared for emerging infectious disease (EID) threats such as Ebola.” Hospitals began updating their emergency plans, provided education and training for staff, particularly front-line staff, purchasing additional supplies and the very important task of conducting drills. HHS provided many resources, and these are available to date. The greatest challenges for hospitals to maintain preparedness includes immediate and day-to-day priorities taking precedence, preparing for natural disasters and staff time. In December 2014 it was reported that state health officials had designated 35 hospitals as “Ebola centers” and were ready to accept patients if necessary.

Pandemic Preparation for COVID-19
Outbreak or pandemic readiness is multi-layered and requires effort at the federal, state, local and individual facility levels, as evidenced by Ebola.

Pandemic preparation guidance for COVID-19 is changing daily as the experts learn more about this evolving illness. CDC continues to provide ongoing updates to healthcare professionals. These guidelines are extensive, and many resources are available for healthcare professionals in acute-care hospitals and for emergency medical service (EMS) personnel. Guidance for outpatient care and other inpatient facilities has not been provided at this juncture; however, the CDC does recommend that all healthcare providers and facilities refer to the guidelines to keep updated on the evolving situation. Key components to effective containment of this emerging virus include the following:

Evaluating and Reporting Persons Under Investigation (PUI)
The CDC clinical criteria for a 2019-nCoV person under investigation (PUI) have been developed based on what is known about MERS-CoV and SARS-CoV and are subject to change as additional information becomes available. Healthcare providers should obtain a detailed travel history for patients being evaluated with fever and acute respiratory illness. The CDC’s guidance for evaluating and reporting a PUI for MERS-CoV remains unchanged.

Criteria to Guide Evaluation of Persons Under Investigation (PUI) for 2019-nCoV
For any patient meeting criteria for evaluation for COVID-19, clinicians are encouraged to contact and collaborate with their state or local health department. For patients that are severely ill, evaluation for COVID-19 may be considered even if a known source of exposure has not been identified

Recommendations for Reporting, Testing and Specimen Collection
Healthcare providers should immediately notify both infection control personnel at their healthcare facility and their local or state health department in the event of a PUI for 2019-nCoV. State health departments that have identified a PUI should immediately contact CDC’s Emergency Operations Center (EOC).

Interim Healthcare Infection Prevention and Control Recommendations for Persons Under Investigation for 2019-nCoV
This section of the guidance is extensive and includes but is not limited to “Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings.

PPE for Healthcare Personnel
As the guidance states, “Healthcare personnel can protect themselves when caring for patients by adhering to infection prevention and control practices, which includes the appropriate use of engineering controls, administrative controls, and personal protective equipment (PPE). The CDC has issued guidance recommending the use of PPE for healthcare personnel caring for patients with confirmed or possible 2019-nCoV infection.”

In summary, emerging pathogens capable of spreading easily from person to person create a vulnerable and potentially dangerous situation worldwide, with the threat of outbreaks at any time. Immunity is usually absent, resulting in potentially severe repercussions for infected patients. History has shown that four influenza pandemics have occurred between 1918 and 2009. In addition, Ebola, the first hemorrhagic viral disease arrived in 2014.

Government, state and local agencies are working diligently to ensure that guidelines and resources are available for healthcare professionals, including those working in acute-care facilities, to prepare for an isolated patient or an influx of patients. It is the responsibility of these facilities to ensure that action plans for pandemic preparedness are developed, implemented, enforced and tested by performing drills at various times, to ensure that at any moment in time, they are prepared for the inevitable.

Phenelle Segal, RN, CIC, FAPIC, is president of Infection Control Consulting Services.


What to Look for in a Vendor Partner

By Linda Homan, RN, BSN, CIC

This article originally appeared in the February 2020 issue of Healthcare Hygiene magazine.

When it comes to infection prevention, we all want a silver bullet, a quick fix that cuts through complexity and provides an immediate solution to a problem.  In truth, there is no silver bullet, but there are fundamental infection prevention measures that are proven to be effective in reducing healthcare-associated infections, such as hand hygiene, environmental hygiene, and instrument reprocessing.

In 2010, Wenzel and Edmond introduced the concept of horizontal and vertical infection prevention measures.1 Vertical measures are pathogen-based, reducing infection or colonization caused by specific pathogens in selected patient populations. They are often higher cost interventions as they may involve a microbiologic screening test, and they often are more resource intensive. Examples of vertical interventions are nasal decolonization to prevent transmission of MRSA, MDRO active surveillance and isolation precautions all of which are labor intensive and add cost to patient care. Horizontal measures are already part of routine patient care, are applied to all patients and are equally effective against superbugs as they work against garden-variety organisms.

Horizontal measures are generally less costly than vertical interventions and are consistent with patients’ need to avoid all infections, not just those due to specific organisms.2 The challenge is that horizontal measures often require modification of the day-to-day behaviors of healthcare workers, which means they are more difficult to sustain. They require ongoing education and feedback around a standardized process and buy-in from healthcare workers themselves in order to consistently practice the desired behavior. Hand hygiene, environmental cleaning and disinfection, and instrument reprocessing are horizontal measures and they include not only efficacious products, but also evidence-based processes and diligent practice by healthcare workers.

Product + Process + Practice = Sustained Performance Improvement

When it comes to horizontal infection prevention measures, it is not enough for vendors to offer a product and make a sale. Vendors should be held to a higher standard – they should be vendor partners. A vendor partner is an extension of your team and an asset to your hospital’s success.  They are a partner who works with you from identifying a need and supplying a solution, to implementing and sustaining improvement with your facility’s team. It is not transactional, and it is not just a product.

Why should hospitals expect this level of service from their vendors? Because healthcare is complicated and changing quickly. Hospital margins are being pinched. Staff are being asked to do more with less.  There are emerging pathogens that are threatening patient safety. A vendor partner’s goal should be your ongoing success as a healthcare provider – sustained performance improvement.  But, in order to succeed in this new healthcare environment, we must move past that transactional relationship to a partner relationship that holds vendors to a higher standard and makes them part of a holistic, long-term solution.

A good vendor partner will provide:

  • A strong business case to help stakeholders understand the value of the solution
  • Data and actionable insights that are easy to understand and drive continuous improvement
  • Education in a variety of formats and languages
  • Timely and comprehensive on-site service
  • A solution that easily integrates into existing workflows
  • Onsite customer support to ensure a solution’s success

They must also be willing to partner with customers to standardize processes and improve healthcare worker practices. This requires evidence-based protocols, education and objective performance feedback so that hospitals understand exactly how they can make improvements.  It’s a partnership that addresses not only at the product, but the processes and practices that will deliver performance.

I have worked on the business side of infection prevention for many years, but prior to that I was a practicing infection preventionist, certified wound care specialist and nurse manager for just as many years.  In the infection prevention and wound specialist roles I worked with many vendors.  Some were transactional – they would try to sell me something and, once sold, walk away - no educational support, no follow up, no ongoing connection. Others were more focused on establishing trust and partnership.

One of the most influential people in my career in those days was a sales representative for a wound care company.  She was a wound, ostomy continence nurse herself prior to going into sales, and she taught me a lot -- not just about the dressings she was selling, but about wound care itself. She encouraged me to gain expertise that enabled me to take the exam to become a certified wound care specialist, which I did.  I went on to become an infection preventionist and, recognizing the value of certification, quickly became certified in infection prevention and control.

The point of this short autobiographical sketch is to highlight the different approaches that manufacturers and their representatives have toward the customer.  Some are transactional, some are partners.  My wound care sales representative wasn’t just selling me a product, she was a consultant, providing me with the tools and information I needed to help my team improve patient care. Depending on what you are purchasing, either approach might be right.  If you are purchasing tongue depressors, a transactional approach makes sense.  However, if you are purchasing something more complex that needs to fit into your facility’s workflow, such as a product or service that has an impact on patient outcomes and hospital margins, then a vendor partnership is in order because they will help you see blind spots and opportunities for improvement and help you incorporate them into your facility’s operations.  It is another set of eyes, a helping hand, a partnership.  It makes sense.

Here are some things to look for in a vendor partner throughout the sales cycle:


Before vendor partners suggest a solution, they should ask you about your facility.  They should be listening to you and your challenges – problems that you’re trying to solve but haven’t been able to yet.  Once they understand your operations, only then can they suggest solutions that can meet your needs.  They should also be asking you about your facility’s demographics such as:

O Basic facility statistics (size, beds, etc.)

O Facility ratings

O Publicly available infection rates

O Patient population in your hospital

O Hospital and system strategic initiatives

Before asking for your business, vendor partners should provide you with strong, evidence-based resources to support their products.  You don’t need to see clinical studies to decide which tongue depressor to buy, but, if the vendor is claiming to improve patient outcomes or operational efficiency, evidence is needed.  Here is an example: not all efficacy claims need to be supported by a randomized, controlled trial.  If a disinfectant has an EPA claim as a sporicide, a clinical study to prove that it kills spores is not necessary because EPA registration ensures that the product kills spores.  The claim that the same sporicide reduces C. difficile infection rates when used as part of an overall environmental hygiene program, however, should be substantiated by clinical evidence.

Vendor partners should also be sharing their knowledge of industry trends. They focus on emerging issues and technology in their area of expertise and can help you “see around the corner” so that you’re prepared for what is coming next.

Some products and services require a trial before deciding to purchase.  While your hospital may have unique circumstances to take into consideration, a strong vendor partner has a well-defined process to ensure an effective trial that can account for your circumstances.  They will also have the resources (product, tools, training and people) to support the trial so that you aren’t taking on all the work by yourself. Remember, their job is to make your work better.

Before a trial begins though, it is critical that you and the vendor partner agree on metrics for success.  The success criteria should be objective, measurable and achievable within the timeframe of the trial.  For instance, while a product may help reduce healthcare-associated infections, the outcome measure of infection rate reduction is not measurable within the timeframe of a one-month trial. Rather, evaluate the process measure.  During a trial for an electronic hand hygiene compliance monitoring system, one can measure the impact of the system on the process measure of hand hygiene compliance, but not the outcome measure of HAI reduction – that simply requires more time.

Value Analysis

Vendor partners help provide you with talking points for key conversations with hospital stakeholders by anticipating what questions will be asked, knowing stakeholder priorities, and providing appropriate data to share.

Once you’ve decided to take a product to the value analysis committee, vendor partners can help you prepare messaging that presents your case convincingly and helps stakeholders understand why they need to take your recommended actions.  They do this by helping you:

O Target your message to the audience. Top priorities for a c-level executive are different than those of clinical staff, for instance, and top priorities for a CEO are not the same for CFOs or COOs either.

O Make strong comparisons. Compare the value of the solution you are recommending to what is currently being done.

O Bring the evidence. Provide well-supported research, studies, and other data that support your recommendation and resonate with your stakeholders.


The collaborative vendor partner’s work is just beginning once the product has been approved for purchase.  Work with your vendor partner to map out the implementation timeline and process.  They should provide in-person education and training along with leave behind train-the-trainer resources for you to use when training new employees or providing refresher training.

And, because it’s difficult to measure or make improvements without good data, digital technology plays an increasing role in this space because it provides hospitals with actionable insights that they can use for continuous improvement. Vendor partners should provide comprehensive training on the collection, analysis and reporting of any insights that are derived as part of the product or service.

They will also help you evaluate what’s working and make contingency plans for addressing results that aren’t what you expect.

Ongoing support and partnership

Ongoing support and partnership are key deliverables from a vendor partner. The relationship doesn’t end with a purchase.  Vendor partners should review data, provide education, follow up and service on a regular, mutually agreed upon cadence to ensure that you’re reaping the benefits of said solution.  This is especially important when the solution being implemented is intended to drive behavior change such as hand hygiene or environmental hygiene compliance – it simply doesn’t happen overnight. It is a process that is optimized over time to accommodate your facility’s evolving needs.


When solving for complex issues that require behavior change, hospitals should be looking beyond products for a more holistic and long-term solution.  Hospitals can improve results by partnering with vendors who work alongside them to develop lasting, customized, and programmatic solutions that address their specific needs.  Something I think hospitals expect, but shouldn’t, is that improvements will fade (regress to the mean) over time.  In fact, they should expect and be armed with the products, processes and practices that will continuously improve their performance over the lifetime of the solution.

Change can be hard, especially when it involves adjustments to behavior, but with the right vendor partner it is possible for hospitals to make comprehensive and sustainable improvements to horizontal measures that impact clinical and operational outcomes, while also cultivating the financial wellness of the hospital. Products alone simply don’t cut it anymore – hospitals can and should expect more from their vendor partners.

Linda Homan, RN, BSN, CIC, is senior manager of clinical affairs for Ecolab Healthcare.


  1. Wenzel RP, Edmond MB. Infection Control: The case for horizontal rather than vertical interventional programs. Int J Inf Dis 2010; S3-S5.
  2. Edmond MB, Wenzel RP. Screening Inpatients for MRSA — Case Closed. N Engl J Med 2013; 368:2314-2315.


The Role of the Infection Preventionist in Product Purchasing

By Sue Barnes, RN, CIC, FAPIC

This column originally appeared in the February 2020 issue of Healthcare Hygiene magazine.

As healthcare costs continue to rise, the process of selection of clinical products must be objective and scientific. Because there are so many elements involved during this process, coordination by the value analysis committee is critical to ensuring both patient safety and cost containment. In the role as a core member of this committee, the infection preventionist (IP) serves a number of functions including:1,2
• Bringing formal proposals for the introduction of infection prevention products/technology incorporating evidence of efficacy and estimated return on investment (ROI);
• Providing consultation regarding the safety and efficacy of less expensive products supporting prevention of HAI, that may be proposed by the committee as a cost saving measure;
• Providing important guidance to ensure that any product or technology introduced can be effectively cleaned and disinfected if used on or around patients, and to ensure that the recommended products for cleaning/disinfecting are compatible with those in use at the facility;
• Supporting the committee’s assurance of a vendor’s capacity to provide adequate staff training in real time so that the product/technology will be used appropriately and result in optimal outcomes;
• Ensuring that any infection prevention product meets all evidence-based clinical guidelines and recommendations from regulatory and clinical organizations including the CDC.

Related to and supporting these functions are the additional important roles played by effective IPs, of early adopter and principle investigator for trials of innovative products supporting prevention of healthcare associated infection (HAI).3,4 A classic example of the IP role as early adopter has been demonstrated with the range of chlorhexidine gluconate (CHG) containing products. It was far in advance of randomized clinical trials proving efficacy of CHG in reducing infection risk, that IP departments began championing CHG based products starting with healthcare hand soap in the 1970s.5 It subsequently became a community standard and then decades later the Centers for Disease Control and Prevention (CDC) finally added it as a recommended practice in 2002.5 Similar time gaps can be seen between implementation of many other CHG containing products and the publication of randomized controlled trials and clinical guideline integration for infection prevention, including vascular access skin prep, impregnated central venous catheters, impregnated surgical and vascular dressings.5 In the absence of patient risk, many IPs champion products based on early evidence of efficacy in order to optimize patient safety. It is a certainty that many patient lives have been saved as a result of this philosophy of early adoption.

The role of principle investigator and/or participant in studies of innovative products is equally important in the quest for zero preventable HAI. From simple before and after studies, to large double blind randomized controlled studies, IPs have participated in and led trials of innovative products designed to reduce HAI risk, building the evidence base for efficacy. This typically initially leads, often only after many years. to establishing a community standard, and then much later to inclusion in clinical guideline(s).6

IP and Industry Collaboration
From the frontlines of healthcare in hospitals and clinics to the corporate offices of the Association for
Professionals in Infection Control and Epidemiology (APIC), IPs work collaboratively with industry partners to
introduce innovative products and technology designed to optimize patient safety by reducing HAI risk.7 At the
corporate level the APIC Strategic Partner Program is a formal, mutually beneficial partnership between APIC
and Industry Partners united in the common goal of reducing the risk of infection. The industry partners play an important role in supporting many of the programs and services that makes the APIC membership so valuable. More recently Industry Perspectives has been introduced by APIC, an online resource for IPs and healthcare workers to stay up-to-date on products, services, research, and innovation relevant to the field of infection prevention and control.

An important opportunity for IP professionals at all levels to learn about new infection prevention products, and develop relationships with industry partners, occurs annually during conferences including the annual meetings of APIC and the Society for Healthcare Epidemiology of America (SHEA). When visiting the vendor exhibit-hall during these conferences it’s helpful to be prepared with a few standard questions for vendors such as:
1. What studies providing evidence of efficacy have been published in peer reviewed journals and/or presented at conferences?
2. Does the data available address reduction of bacterial loads only, or also reduction of infection rates?
3. Can the vendor connect you with an IP at another facility using the product with good results?

Industry partners often offer a range of supportive services that can be leveraged by IP departments to reduce diversion of constrained IP resources. For instance, since tracking of compliance with appropriate product use is time consuming, this is a significant value-added service often provided by industry partners. Most vendors are also willing and able to partner with the clinical teams to provide direct observation, coaching and teaching when new product(s) are introduced. Collaboration between industry partners and IP professionals simply makes patients safer.

1. Henry A. Product Evaluation. APIC Text Online Chapter 5; October 3, 2014.
2. Valenti W. Infection control and product evaluation. Infectious Disease Advisor - Hospital Infection Control. 2017.
3. Conway L et al. Tensions inherent in the evolving role of the infection preventionist. Am J Infect Control. Vol. 41, No. 11, 959-964.
4. Barnes S, et al The emerging role of the corporate or system-level infection prevention director for integrated delivery networks. Am J Infect Control. Vol. 47, No. 6, 638-642.
5. Chlorhexidine Facts:
6. Pyrek K. Injecting the research and resources into infection prevention. Infection Control Today. May 17, 2018.
7. Humphreys H. New technologies in the prevention and control of healthcare-associated infection, J R Coll Physicians Edinb. 2010 Jun;40(2):161-4.

Leading the Way to Zero: Moving Purposefully Forward Together

By Sylvia Garcia, MBA, RN, CIC

This column originally appeared in the January 2020 issue of Healthcare Hygiene magazine.

At the opening of the 2006 annual meeting of the Association for Professionals in Infection Control and Epidemiology (APIC), then-APIC president Kathleen Arias said, “Zero tolerance is not a number—it’s a culture in which healthcare providers strive to prevent as many healthcare-associated infections as possible. We may never eliminate every infection, and many cannot be prevented, but infection control professionals should accept nothing less than the very lowest rates of infection.”

Back then, I sat in the audience and thought to myself, great idea, but is it achievable? Which infections should we prioritize? What are the key interventions? How do we get support from leadership and staff? (I wasn’t even thinking about the patient or their family at that point.)

There were already evidence-based guidelines available from Centers for Disease Control and Prevention (CDC) and other professional organizations on a variety of key topics. The next year, the Centers for Medicare & Medicaid Services (CMS) published payment reforms intended to increase emphasis on value-based purchasing which identified central line-associated bloodstream infections (CLABSI) and indwelling catheter-associated urinary tract infections (CAUTI) as “never events.” So, I knew CLABSI and CAUTI would be on leaderships’ list of priorities, but was this enough?

The answer would become clearer during 2008 when the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), APIC, and the Joint Commission worked together to create the Compendium of strategies to prevent healthcare-associated infections in acute-care hospitals. These documents focused on implementation of basic strategies to prevent the most common healthcare associated infections (HAIs) as well as providing special approaches when basic practices were not enough. They also recommended that accountability be assigned and proposed performance metrics to monitor quality improvement efforts.

Information from the CDC, the Compendium and other professional organizations soon became an even greater organizational priority when the Joint Commission added three new requirements to national patient safety goal (NPSG) 7: Reduce the Risk of Healthcare Associated Infection in 2009 and an additional topic area in 2012
• Implement evidence-based practices to prevent health care–associated infections due to multidrug-resistant organisms (MDRO)
• Implement evidence-based practices to prevent CLABSI
• Implement evidence-based practices for preventing surgical site infections (SSI)
• Implement evidence-based practices to prevent CA-UTI

Today, the results of concentrated efforts to identify key interventions and reduce risk by implementing evidence-based practices are clear. Nationally, among acute care hospitals, significant progress has been made. For example, between 2017 and 2018, an 8 percent to 12 percent statistically significant decrease in CAUTI, CLABSI and hospital-onset C. difficile infections was reported. However, there was no significant decrease in SSI rates.

According to point prevalence surveys of hospitals conducted in 2011 and then again in 2015, there has also been a statically significant (p<0.0001) decrease in HAI amongst hospitalized patients: 1 in 25 (4 percent) versus 1 in 31 (3.2 percent), respectively. Pneumonia, gastrointestinal infections (most of which were due to Clostridium difficile) and surgical-site infections were the most common health care-associated infections infection identified.

As the following NPSGs are moved to standards effective July 1, 2020, organizations need to continue to implement evidence-based practices.
• NPSG.07.03.01—Multidrug-resistant organisms
• NPSG.07.04.01—Central line–associated bloodstream infections
• NPSG.07.05.01—Surgical site infections
• NPSG.07.06.01—Catheter-associated urinary tract infections

Organizations should also be aware that in November 2019, the CDC released a report about the threat of antibiotic-resistant organisms and the statistics are eye-opening: “…antibiotic-resistant bacteria and fungi cause more than 2.8 million infections and 35,000 deaths in the United States each year. That means, on average, someone in the United States gets an antibiotic-resistant infection every 11 seconds and every 15 minutes someone dies.”

To keep patients, visitors and staff safe, organizations should be ready to implement CDCs recommended containment strategies when these organisms are identified. This includes ensuring compliance with existing Joint Commission focus areas, including:
• Implementation of standard and transmission-based precautions
• Making appropriate personal protective equipment available to staff
• Training staff on selection, limitations, maintenance, donning and removal of personal protective equipment
• Enforcing use of appropriate personal protective equipment

Note: Examples of potential survey findings related to the aforementioned areas were published in the August 2019 edition of Perspectives, under the “Consistent Interpretations” section.

We are making progress but there is still much work to be done both for the common infections that occur in healthcare such as SSI, and those, such as antibiotic resistant organism and other high- consequence organisms, that loom on the horizon.

Each healthcare organization needs to look within and conduct an accurate risk assessment – and ask: where are the low hanging fruit and the biggest risks? Are leadership, staff, patients, their families and their significant others are involved? And, is everyone working together to prioritize, plan, implement, and monitor?
If we all hold ourselves and our colleagues responsible and accountable…together we can get to zero HAIs!

So, 14 years later, do I think that we can achieve zero HAIs? My answer is a resounding Yes!

Sylvia Garcia, MBA, RN, CIC, is director of infection prevention and control within the of Division of Healthcare Improvement at the Joint Commission.

1. Association for Professionals in Infection Control and Epidemiology. Prevention Strategist. 40 Years of Growth and Progress. Winter 2012.
2. Centers for Medicare & Medicaid Services (CMS), HHS. Medicare program: changes to the hospital inpatient prospective payment systems and fiscal year 2008 rates. Federal Register. 2007;72(162):47129–48175.
3. Centers for Disease Control and Prevention. 2018 National and State Healthcare-Associated Infections Progress Report. Available at:
4. Magill SS, Changes in prevalence of healthcare associated infections in U.S. Hospitals. N Eng J Med. 2018 Nov 1;379(18):1732-1744. doi: 10.1056/NEJMoa1801550
5. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States – 2019. Available at: .
6. Centers for Disease Control and Prevention. Containment Strategy Responding to Emerging AR Threats. Available at:

Screening for Asymptomatic Bacteriuria: A Dangerous Intersection

By Barbara DeBaun, MSN, RN, CIC

This column originally appeared in the December 2019 issue of Healthcare Hygiene magazine.

It was a dark and stormy specimen. You know the story.  It begins with a well-meaning nurse who notices that the urine in the patient’s urinary drainage bag is dark in color. When the urine is drained from the bag, the nurse notes that the urine is not only concentrated but smelly. More likely than not, this nurse will collect a sample of the urine and request an order for urinalysis and culture. The nurse has seen this before and is confident the patient’s symptoms suggest a urinary tract infection.

Another twist on the story is the patient who presents in the emergency department (ED) and whose daughter or son insists that “When mom gets like this, it’s always a urinary tract infection.”  Sound familiar?

Asymptomatic bacteriuria (ASB) is the presence of one or more species of bacteria growing in the urine at specified quantitative counts (≥10⁵ colony forming units (CFU/mL or ≥10⁸ CFU/L regardless of whether there is presence of pyuria or signs/symptoms that are attributable to an urinary tract infection.

What do we know about ASB?

- Present in >30 percent of nursing home patients and 100 percent of those who are chronically catheterized

- 23 percent to 50 percent of antibiotic days for UTI are unnecessary treatment of ASB

- ASB is a benign condition that generally does not require treatment

Urine culturing misadventures often begin when a patient with a low pre-test probability of having a UTI is tested for one. It may start when a physician orders a urinalysis and culture on a patient who is unlikely to have a UTI, or in the scenario previously described, when a nurse obtains the specimen first and requests the order later. The integrity of the specimen including technique for obtaining and transporting it will impact the result.

Despite our best efforts, we still hear of urine samples being obtained directly from urinary catheter drainage bags. It is not unusual for a urine sample to be considered low priority for transfer to the lab therefore overgrowth of bacteria may result. The downstream impact of this includes additional work for the laboratory, increased costs for the pharmacy, and a negative impact on antimicrobial stewardship.  Infection Preventionists are tasked with reporting hospital onset catheter associated urinary tract infections (CAUTI) and are likely reporting cases that are not true infections despite meeting the NHSN case definition. Financial penalties and impact on reimbursement are impacted by a substandard culture of culturing. The ultimate negative impact of culturing patients for an infection that is probably not likely, is that patients receive antibiotics that are not necessary.

The Infectious Diseases Society of America (IDSA) recently issued a clinical practice guideline for the management of asymptomatic bacteriuria. These 2005 guidelines recommended that only pregnant women and those scheduled to have an invasive urologic procedure be screened for ASB. The updated guidelines provide additional guidance on children and specific adult populations such as those with neutropenia, solid organ transplants, and surgery that does not involve the urological tract. Much has been learned about the impact of testing for ASB in these settings therefore the Society has provided guidance that will ultimately impact antimicrobial prescribing and the emergence of antimicrobial resistance.

An all-too-common practice is for practitioners to test a patient who has been admitted to an acute-care hospital with an indwelling catheter. The temptation to screen may be based upon the pressure to “capture on admission” or prove that the patient was already “infected” at the time of admission.  The IDSA strongly advises against screening or treating ASB. As the screening of patients admitted with a catheter are likely to present in the ED, it is critical to partner with the ED providers and nurses so they are aware of the negative impact of performing urine screening in patients who are unlikely to have a UTI.

An additional strong recommendation is to avoid screening patients who are scheduled to undergo elective nonurological surgery for ASB. This is an area where the IP has tremendous opportunity to impact and drive change.  Pre-operative order sets commonly include “urinalysis” and it may be “because we have always done it and we’re afraid to stop doing it.”  We must have critical conversations with our surgical partners to discuss the impact of ASB screening to assure them that the risk of testing may outweigh the benefits.  A patient scheduled for a knee replacement will be far better off if s/he is not treated with an antibiotic for ASB. There are no data to support the benefit of urine screening for nonurological surgical patients, however there is an abundance of data to connect antimicrobial therapy with negative downstream effects such as multi-resistant organisms and C. difficile infection.

Our laboratory “culture of culturing” practices that discourage the screening of patients who have a low probability of having a UTI directly impact antimicrobial prescribing practices and patient outcomes.  This requires a partnership that connects the dots between laboratory stewardship and antimicrobial stewardship so that antibiotics are only prescribed when they should be.

Barbara DeBaun, MSN, RN, CIC, is an improvement advisor for Cynosure Health.




Education and Training of Frontline Infection Preventionists

By Matthew Hardwick, PhD

This column originally appeared in the November 2019 issue of Healthcare Hygiene magazine.

One of the most fundamental operations in any medical facility is cleaning. Cleaning critical areas such as patient rooms and surgical suites, as well as, less critical areas such as waiting rooms, hallways, cafeterias, kitchens, etc. are all apart of keeping medical facilities free of pests and, hopefully, pathogens. However, for the longest time, cleaning hospitals has followed the same basic principles as cleaning a hotel room -- clean visible soil. While there are cleaning protocols in place at nearly all medical facilities, the predominant feature of these protocols is routine cleaning with a focus on visible soil. It should come as a surprise to no one that pathogens do not always reside in visible soil. Indeed, many of the fluids and semi-solids that pathogens use to move from place to place are not readily visible to the naked eye (think sputum or fingerprint oils). Despite this fact, many cleaning protocols do not take invisible soil into account during both routine and specialized cleaning protocols. The responsibility for this lack of awareness belongs to all involved in healthcare. While environmental service (EVS) personnel, nurses and technicians are primarily responsible for keeping our medical facilities and equipment clean, they are only as good as they are trained to be.

From the Centers for Disease Control and Prevention (CDC) to the Association for the Healthcare Environment (AHE) to the Association for Professionals in Infection Control and Epidemiology (APIC), all agree that EVS personnel require extensive training to play their pivotal role in keeping healthcare environments free of pathogens. Indeed, each has dedicated significant resources to developing training programs for EVS workers. AHE has a suite of training programs aimed at frontline EVS workers to surgical suite cleaning to EVS management and leadership. Through funding from the CDC, APIC has developed training modules that run the gamut of cleaning from the basic principles, personal protective equipment, chemical safety, and techniques for cleaning and disinfection. In addition to these resources, vendors have developed their own extensive training for EVS workers. Such training is, perhaps, more individualized and often encompasses multiple days for training sessions and accompanied by annual refreshers for each worker.

  • Fluorescent markers – This tool was developed in order to provide “before” and “after” feedback for EVS workers. In short, an invisible fluorescent gel is applied to pre-determined surfaces prior to EVS cleaning. Following cleaning, a manager uses a black light to determine if the gel has been removed from all the spots. In this way, the manager can determine adherence to cleaning protocols. It should be noted, however, that this method does not determine the efficacy of removing pathogens from environment.
  • Adenosine Triphosphate (ATP) swabs – One way to determine if a surface is free of pathogens is to detect organic ATP (derived from biological organisms like bacteria, fungi and human cells) left on surfaces. ATP detection is performed only following cleaning, reducing the time needed for monitoring. In theory, this method will not only determine an EVS workers adherence to established cleaning protocols, it will also evaluate the protocol for pathogen removal. There is one big problem with this method, however. First, we do not know the half-life of biologically derived ATP, meaning that cells maybe dead (killed by auxiliary techniques such as UV and vapor) and still leave active ATP behind. In our laboratory, we have detected ATP signals in the absence of viable bacterial loads, more than 48 hours after exposure to UV light.

The development of fluorescent marker and ATP swab methodologies are a boon to the education and monitoring of EVS workers. However, given the limitations of both the current cleaning methodologies and these monitoring devices, we still have a long way to go before we have adequate tools to empower EVS workers.

While EVS personnel receive considerable training, nurses and technicians may only receive cursory training, if any at all, on how to clean medical equipment and how to use disinfectants. APIC’s training does include sections for healthcare professionals including a section on “roles and responsibilities” geared toward who cleans what in healthcare environments. Despite APIC’s efforts, there is clearly a gap in training for nurses and technicians. This education and training gap is critical, since these individuals are largely responsible for cleaning critical patient-care equipment such as blood pressure monitors and dialysis machines. Without understanding which disinfectant to use and the appropriate dwell times, as well as how to use wipers in order to reduce cross-contamination, we cannot begin to hope that healthcare surfaces will be cleaned properly.

In last month’s Healthcare Hygiene magazine, Linda Lybert and Caroline Etland described a comprehensive literature review commissioned by the Healthcare Surfaces Institute. As a part of this review, studies on current healthcare training and education were examined. Despite the availability of numerous training programs and studies to show that only 48 percent of healthcare surfaces are cleaned appropriately, no research studies were found to determine if these programs are effective. Rather, only a handful of research studies were focused on monitoring cleaning practices. This lack of scientific research into the effectiveness of EVS training is surprising and, frankly, appalling.

Given the rapidly evolving world of infection prevention, it is critical that all healthcare professionals – EVS workers, nurses, technicians – receive the education and training they need to fill their roles as frontline infection preventionists.

Matthew Hardwick, PhD is president/CEO of ResInnova Laboratories and is the president of the board of directors of the Healthcare Surfaces Institute. He is a thought leader in the field of infection prevention in the healthcare environment of care and is an expert in antimicrobial surface technologies.

When Prime Directives Collide: The Survival Wars

By Wava Truscott, PhD, MBA

This column originally appeared in the November 2019 issue of Healthcare Hygiene magazine.

The Prime Directive driving all humans is an internal instinct to survive.  Throughout the ages, man has struggled and adapted to protect himself, his family, and his tribe.  This core drive to survive has advanced weapons for protection, from crushing threats with rocks, to throwing spears, and on to more powerful weapons. To survive weather extremes, man huddled in caves, constructed lean-tos, and moved up to more permanent structures of wood, stone, and cement.

The same Prime Directive drives microorganisms to adapt or die. However, instead of innovative adaptations requiring thought, bacteria experience genetic mutations that may, or may not be helpful. Mutations that protect bacteria enable survival, while mutations that are not sufficiently protective die off with the bacteria.  For example, those bacteria that received successfully mutations allowing them to withstand temperatures up to 180 degrees F, continue to thrive in the hot springs and steam vents of Yellowstone.

The adaptive capacity of bacteria has been incredibly successful, especially considering they have been on earth for over 1.8 billion years. Most successful mutations are passed on vertically from generation to generation in a long looped single chromosome composed of double-stranded DNA residing in the nucleolus of the bacteria. The instructional information is passed primarily during cell division, enabling future progeny to survive in their environment. These traits include such capabilities as biofilm formation for tribe protection, the ability of a small number of bacteria to form one-occupant spores, and the inherited capability that a few bacteria possess to produce small colony variant (SCV) progeny that, in effect, are invisible to the human immune system.

Some protective mutations can be transferred horizontally to other bacteria unrelated to the original “mutant.” The genetic instructions are encoded in a much smaller double-stranded DNA loop, the plasmid. Plasmids can replicate independently producing as many as needed to “share” with other bacteria. Once a bacterium receives a plasmid, it in turn produces replicates to fortify its own protection and potentially to distribute to others. Plasmids are also vertically passed on to progeny during cell division, thus improving the odds of survival for their descendants.

Antibiotic resistance genes are very successful mutations located on plasmids. The mutations only work on specific antibiotic types and only by specific action modes. There are at least 10 different protection modes that have been successful:

Within the bacterial cell itself:

  1. Blocks entry of specific antibiotic types trying to enter bacterial cell
  2. Flushes the antibiotic out of the bacterial cell before it reaches their targets
  3. Produces enzymes that break apart antibiotics before they reach their targets
  4. Produce antibiotic modifying enzymes that render the antibiotic ineffective
  5. Modify the targets so they cannot be impacted by the antibiotic
  6. Make so many clones of the antibiotic targets, that the antibiotic is spent before destroying all the targets

Within the group-protective biofilm:

  1. Exo-enzymes distributed throughout the biofilm matrix like land mines in the battlefield, digest specific antibiotic types when contact is made
  2. Many bacteria in the center of the biofilm, are altered into persister cells that shut down (hibernate), not allowing anything in---including antibiotics
  3. Most biofilm founding-bacteria attract diverse bacterial types to increase the odds of biofilm survival through genetically diverse protective adaptations
  4. Proximity and purpose of the (a) peripheral bacteria in a biofilm “fortress” makes them the forward perimeter guards. It is there that plasmids for diverse means of protection are most liberally shared. For example, the more means of defeating antibiotics each defender possess, the more effectively broad the antibiotic resistance. Bacteria deeper in the matrix are responsible for (b) harvesting moisture and nutrients, (c) metabolic waste disposal, (d) hibernating as persister cells, and (e) transforming into “Supper-Surface-Grippers.”

U.S. Daily Human Cost: Each day, approximately 5,000 Americans acquire a serious antibiotic–resistant infection.  Of those, about 63 patients will die and a large percentage of survivors will suffer long term chronic consequences. By 2050, it is projected that untreatable antibiotic infections with overtake cancer as the number one cause of death globally.

U.S. Annual Financial Cost: Antibiotic-resistant infections add $20 billion in excess direct health care costs and up to $35 billion the additional costs to society for lost productivity.

As with any battle, attacking before the enemy can establish a foothold and fortify a reservoir of resistant pathogens is by far the easiest, most effective and least costly means of patient protection. It takes a team to do what’s needed including infection preventionists, OR and device reprocessing staff, environmental services, engineering, and clinicians.

Infection preventionists must have help to handle required reports, statistics and trending paperwork so they can be actively on the floors, teaching, advising, admonishing, finding solutions and supporting staff trying to do the right things under pressure.

Infection prevention efforts are becoming more and more imperative.  We are facing a clash of Prime Directives between patient and pathogen. Bacteria have almost a 2 billion-year proven record of adapting to survive.  We are losing the capability to treat more and more our patients’ infections.  We need to adapt tactics, techniques, technologies and responsibilities if we are to win the war for patient survival.

Wava Truscott, PhD, MBA, is principal of Truscott MedSci Associates, LLC.     

This article is from the October 2019 issue of Healthcare Hygiene magazine.

Legionella: Recognizing the Risk and the Resources

By Sylvia Garcia, MBA, RN, CIC

Every day, patients are at risk because healthcare facilities are not aware of hazards related to water systems and equipment that uses water, or they have not prioritized it as an important issue. It is estimated by the Centers for Disease Control and Prevention (CDC) that 9 out of 10 infections acquired in a healthcare setting could have been prevented if the facility had initiated a better water management system.

Shockingly, 1 in 4 patients who develop healthcare-associated Legionnaires’ disease will die, compared to one in 10 that will die from community-acquired pneumonia. Even more surprising is the fact that at least 80 percent of the Legionella cases that occur in healthcare facilities could have been prevented by implementing an effective water management program.

The most common sources of Legionella cases are showers, cooling towers, decorative fountains, and hot tubs but anything that can create droplets or aerosols could become a source. For example, putting tap water into a room humidifier could lead to infection. About half of Legionella outbreaks are linked to incidences associated with human error, such as a health care professional not following instructions for use of equipment.

Although Legionella is highly publicized, it is not the only risk related to health care water systems. At the Association for Professionals in Infection Control and Epidemiology (APIC) 2019 Conference, researchers reported that 22 percent of consultations conducted by the Division of Healthcare Quality Promotion (DHQP) were water related. Causes of patient infections were identified as preventable, had the healthcare organization properly utilized available information and followed procedures communicating the need for the organization to implement an effective water management plan. For example, use of consumer-grade humidifiers in an operating room was linked to an outbreak of nontuberculous mycobacteria. Yet, the 2003 CDC Guidelines for Environmental Infection Control in Health Care Facilities clearly state that this this type of humidifier has been linked to Legionella outbreaks.

As with other infection prevention and control challenges, organizations need to follow a standardized approach to reducing risk related to waterborne disease.

1. Regulatory Requirements. Organizations should know their state’s regulatory requirements. Sources include health department and building code requirement documents. New York has enacted state regulations that require hospitals and residential healthcare facilities to perform environmental assessments, implement sampling and management plans to sample their potable water systems for Legionella and institute control measures in the event of a Legionella exceedance. New York also requires cooling towers to be registered and monitored for Legionella. All states provide or employ Healthcare Associated Infection Liaisons to direct healthcare workers to relevant information.

It is also important to understand state reporting requirements for Legionella and to identify known or suspected outbreaks caused by waterborne pathogens. To meet these requirements, facilities must implement a system to identify and evaluate possible cases. A laboratory finding is usually the first step in identifying a possible case. However, the infection preventionist or other knowledgeable person is also needed to apply generally-accepted case definitions or create a case definition in the outbreak setting.

State building codes vary, but many states have adopted a version of the Facilities Guideline Institute (FGI). Organizations can gain access to relevant building codes or, depending on the year, can access the information directly via FGI’s read-only access. For example, FGI 2014 and 2018 state “provisions based on a risk-assessment plan shall be included in the heated potable water system to limit the amount of Legionella bacteria and opportunistic waterborne pathogens.” For the same reason, unsealed, indoor decorative fountains are prohibited in these versions. FGI also provides excellent references - including CDC Guidelines for Environmental Infection Control in Health Care Facilities, American National Standards/American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 188: Legionellosis: Risk Management for Building Water Systems, American Society of Heating, Refrigerating and Air-Conditioning Engineers Guideline 12: Minimizing the Risk of Legionellosis Associated with Building Water Systems and the American Society of Plumbing Engineer’s Legionella Control in Health Care.

2. Centers for Medicare and Medicaid Requirements. In July 2018, CMS updated its requirement to reduce Legionella risk in health care facility water systems to prevent cases and outbreaks of Legionnaires’ disease. The updated requirement makes certain that Medicare-certified hospitals, critical-access hospitals and long-term care facilities develop, implement and monitor the effectiveness of water-management programs to protect patients, visitors and staff from exposure to waterborne pathogens, including Legionella pneumophila.

3. Manufacturer Instructions for Use (IFU). Equipment that uses or is connected to water has specific plumbing, filter and/or maintenance requirements. For example: air gaps may be required for plumbing installations; cooling tower instructions-for-use may specify inspection criteria and biocides to maintain biological control; and equipment may indicate use of sterile water or specific frequency for maintenance. In addition, some equipment may specifically state that it is not appropriate for healthcare settings. Careful reading and compliance with IFUs are essential to preventing outbreaks.

4. Evidence-based guidelines and national standards (EBG). CDC, the American Society of Heating, Refrigerating and Air-Conditioning Engineers and many other organizations have created excellent resources for preventing waterborne illness. Key resources from CDC include 2003 CDC Guidelines for Environmental Infection Control in Health Care Facilities Guidelines for Environmental Infection Control in Health care Facilities and the Centers for Disease Control and Prevention Tool kit, which outlines elements of an effective water management system with focus on health care facilities. EGB will include the following key elements:
• Establish a water management team. There is flexibility in qualifications of team members. However, it is important to seek individuals with backgrounds in the following when forming a health care facility team: facilities management, microbiology, infection prevention, risk management and occupational health.
• Describe the building’s current water system. Create a diagram that highlights water points of entry, distribution, storage and use. Most facilities display building drawings that include their plumbing system, so that is a great place to start.
• Identify where Legionella and other pathogens can grow. Facilities should identify at-risk systems and equipment with respect to their components, installation, configuration, use and condition, as well as vulnerability of persons served by these systems.
• Determine control measures and standards for monitoring them. Control measures must be developed for each risk point. Facilities must determine what is planned to be checked to ensure that their control measures are effective. Examples include but are not limited to: monitoring compliance with routine maintenance, water temperature, pH, chlorine levels and cultures. Note: Routine culture testing for Legionella and other pathogens is not required by CMS but may be required by state or local regulation.
• Establish interventions when clinical limits are not met. The expectation is that facilities establish a plan for remedy if a suspected health care-associated case of Legionella is identified or suspected or if control measures are not being met.
• Make sure the program is functioning as designed and is effective. Validate that all control measures have been implemented as designed and procedures have been established to confirm the water management program is effectively controlling water-related hazards.
• Document and communicate. Facilities’ water management programs should be documented. It is important to inform those at risk of the facility plan in place. If a problem occurs, it is required that the incident is reported to the health department.

5. Create a Facility Water-Management Plan. Using the steps, create a team and sort through water management requirements. The Joint Commission looks for evidence of compliance by using following key elements:
• Facility risk assessment to identify where Legionella and other opportunistic waterborne pathogens (e.g. pseudomonas, Acinetobacter, nontuberculous mycobacteria, and fungi) could grow and spread, and to evaluate programs to protect the health and safety of patients. Relevant standards should be recorded for facility water systems or equipment containing or using water.
• A water management program that considers input from the following publications: American Society of Heating, Refrigerating and Air-Conditioning Engineers 188 and the CDC Toolkit. Developing a Water Management program to reduce Legionella growth and spread in buildings: a practical guide to implementing industry standards.
• Testing protocols and acceptable ranges for control measures, with results of testing and corrective actions taken when control limits are not maintained

The Joint Commission surveyors may ask to review IFUs for equipment that uses or contains water. They also may ask about circumstances that could put a facility’s cooling towers or water system at risk.

Surveyors may also ask for a facility’s plan to mitigate risk, which should include identifying:
• System startups and shutdowns
• Areas of the facility that are closed or have low census
• Changes to municipal water treatment
• Water main breaks
• Construction or renovation
• Fluctuations in source water temperature
• Cooling tower maintenance

A systematic approach will ensure that key requirements and prevention strategies are not missed when preventing waterborne pathogens. There is not one solution to this challenge. In fact, water management needs to be uniquely tailored to each health care facility’s building, equipment, water and conditions. Implementing an organized approach, maintaining correct background information and utilizing key resources will help keep people safe from waterborne pathogens.

Sylvia Garcia, MBA, RN, CIC, is the director of infection prevention and control in the Division of Healthcare Improvement. In this role, she is responsible for the oversight of infection prevention and control for The Joint Commission. She has more than 30 years of experience in infection control in both hospital and long term care settings, as well as eight years of clinical microbiology experience. Most recently, she served as the director of infection control at University of Chicago Medicine and was also an intermittent consultant for Joint Commission Resources for 10 years. Garcia has provided infection prevention and control consultation, assessment and education in a variety of healthcare settings including hospitals, health clinics, ambulatory surgery, and dialysis centers both domestically and internationally. Her specialty areas of interest include disinfection and sterilization, dialysis, infection prevention during renovation and construction, and control of Legionella. One of the highlights of her career has been training healthcare professionals in Saudi Arabia as infection preventionists. She served as a test writer and reviewer for the Certification Board of Infection Control and Epidemiology, and has also authored numerous articles and book chapters related to infection control including a chapter in the APIC Text and the Cleaning, Disinfection and Sterilization Chapter in The APIC/JCR Infection Prevention and Control Workbook, Third Edition. Garcia earned a degree in biochemistry and molecular biology from Northwestern University, a master’s of business administration from the Keller Graduate School of Management, and her nursing degree from Truman College.