New Model Connects Respiratory Droplet Physics With Spread of COVID-19

A droplet suspended in an acoustic levitator. Courtesy of Abhishek Saha, UC San Diego

Respiratory droplets from a cough or sneeze travel farther and last longer in humid, cold climates than in hot, dry ones, according to a study on droplet physics by an international team of engineers. The researchers incorporated this understanding of the impact of environmental factors on droplet spread into a new mathematical model that can be used to predict the early spread of respiratory viruses including COVID-19, and the role of respiratory droplets in that spread.

The team developed this new model to better understand the role that droplet clouds play in the spread of respiratory viruses. Their model is the first to be based on a fundamental approach taken to study chemical reactions called collision rate theory, which looks at the interaction and collision rates of a droplet cloud exhaled by an infected person with healthy people. Their work connects population-scale human interaction with their micro-scale droplet physics results on how far and fast droplets spread, and how long they last.

Their results were published June 30 in the journal Physics of Fluids.

"The basic fundamental form of a chemical reaction is two molecules are colliding. How frequently they're colliding will give you how fast the reaction progresses," said Abhishek Saha, a professor of mechanical engineering at the University of California San Diego, and one of the authors of the paper. "It's exactly the same here; how frequently healthy people are coming in contact with an infected droplet cloud can be a measure of how fast the disease can spread."

They found that, depending on weather conditions, some respiratory droplets travel between 8 feet and 13 feet away from their source before evaporating, without even accounting for wind. This means that without masks, six feet of social distance may not be enough to keep one person's exhalated particles from reaching someone else.

"Droplet physics are significantly dependent on weather," said Saha. "If you're in a colder, humid climate, droplets from a sneeze or cough are going to last longer and spread farther than if you're in a hot dry climate, where they'll get evaporated faster. We incorporated these parameters into our model of infection spread; they aren't included in existing models as far as we can tell."

The researchers hope that their more detailed model for rate of infection spread and droplet spread will help inform public health policies at a more local level, and can be used in the future to better understand the role of environmental factors in virus spread.

They found that at 35C (95F) and 40 percent relative humidity, a droplet can travel about 8 feet. However, at 5C (41F) and 80 percent humidity, a droplet can travel up to 12 feet. The team also found that droplets in the range of 14-48 microns possess higher risk as they take longer to evaporate and travel greater distances. Smaller droplets, on the other hand, evaporate within a fraction of a second, while droplets larger than 100 microns quickly settle to the ground due to weight.

This is further evidence of the importance of wearing masks, which would trap particles in this critical range.

The team of engineers from the UC San Diego Jacobs School of Engineering, University of Toronto and Indian Institute of Science are all experts in the aerodynamics and physics of droplets for applications including propulsion systems, combustion or thermal sprays. They turned their attention and expertise to droplets released when people sneeze, cough or talk when it became clear that COVID-19 is spread through these respiratory droplets. They applied existing models for chemical reactions and physics principles to droplets of a salt water solution--saliva is high in sodium chloride--which they studied in an ultrasonic levitator to determine the size, spread, and lifespan of these particles in various environmental conditions.

Many current pandemic models use fitting parameters to be able to apply the data to an entire population. The new model aims to change that.

"Our model is completely based on "first principles" by connecting physical laws that are well understood, so there is next to no fitting involved," said Swetaprovo Chaudhuri, professor at University of Toronto and a co-author. "Of course, we make idealized assumptions, and there are variabilities in some parameters, but as we improve each of the submodels with specific experiments and including the present best practices in epidemiology, maybe a first principles pandemic model with high predictive capability could be possible."

There are limitations to this new model, but the team is already working to increase the model's versatility.

"Our next step is to relax a few simplifications and to generalize the model by including different modes of transmission," said Saptarshi Basu, professor at the Indian Institute of Science and a co-author. "A set of experiments are also underway to investigate the respiratory droplets that settle on commonly touched surfaces."

Source: UC San Diego

9 Comments on "New Model Connects Respiratory Droplet Physics With Spread of COVID-19"

  1. I am extremely impressed with your writing skills and also with the layout on your blog. Is this a paid theme or did you customize it yourself? Either way keep up the nice quality writing, it’s rare to see a nice blog like this one nowadays.

  2. It’s a shame you don’t have a donate button! I’d most certainly donate to this fantastic blog! I suppose for now i’ll settle for book-marking and adding your RSS feed to my Google account. I look forward to fresh updates and will talk about this blog with my Facebook group. Chat soon!

  3. Hey there! I know this is kinda off topic however , I’d figured I’d ask. Would you be interested in exchanging links or maybe guest writing a blog article or vice-versa? My website addresses a lot of the same subjects as yours and I feel we could greatly benefit from each other. If you are interested feel free to send me an e-mail. I look forward to hearing from you! Excellent blog by the way!

  4. Why viewers still use to read news papers when in this technological world everything is accessible on net?

  5. It’s very straightforward to find out any topic on net as compared to books, as I found this piece of writing at this web site.

  6. Great article! This is the type of information that are supposed to be shared around the internet. Disgrace on the seek engines for not positioning this post upper! Come on over and discuss with my web site . Thank you =)

  7. Yesterday, while I was at work, my sister stole my iphone and tested to see if it can survive a twenty five foot drop, just so she can be a youtube sensation. My iPad is now broken and she has 83 views. I know this is completely off topic but I had to share it with someone!

  8. My spouse and I absolutely love your blog and find a lot of your post’s to be precisely what I’m looking for. Does one offer guest writers to write content available for you? I wouldn’t mind producing a post or elaborating on most of the subjects you write in relation to here. Again, awesome web log!

  9. Hello there I am so excited I found your website, I really found you by error, while I was searching on Askjeeve for something else, Regardless I am here now and would just like to say cheers for a remarkable post and a all round thrilling blog (I also love the theme/design), I don’t have time to go through it all at the minute but I have saved it and also added in your RSS feeds, so when I have time I will be back to read a lot more, Please do keep up the fantastic job.

Leave a comment

Your email address will not be published.


*