Vascular Access

Aseptic Technique and Back to the Basics With ANTT Best Practices

By Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC

This column originally appeared in the April 2021 issue of Healthcare Hygiene magazine.

In today’s world of healthcare there is so much distracting information, about products and new policies, downsizing to manage costs, and necessary activities to manage crises like COVID-19, that we have little time to focus on basic safety practices. Basic practices like attention to good cleaning of skin and access points prior to procedures are often overlooked or given brief action. While education in healthcare curriculum intends to cover asepsis and sterile procedures, many of the foundational concepts of clean hands and establishing a clean working area are forgotten as we give attention to the equipment and the need to hurry through the procedure and be ready to move to the next patient. Concerns over infection associated with peripheral intravenous insertions and management, as noted in the recent ECRI Safety Report, require us to reassess our monitoring practices and educational efforts that ensure the best outcomes for our patients.

We can learn much from our colleagues in the United Kingdom (UK) who emphasize an educational process known as Aseptic Non Touch Technique, or ANTT, as required training for all clinicians interacting with patients and procedures, in keeping with the information available at the Association for Safe Aseptic Practices (ASAP www.antt.org/ANTT_Site/home.html).

The ANTT model and principles were originally developed by Stephen Rowley and Simon Clare, received fast adoption by the National Health System (NHS) of the UK, are incorporated into all NHS hospital policies, and generally accepted across Europe within healthcare practices. Some standard language within the ANTT policies are as follows: “The hospital has adopted a specific type of aseptic technique known as ‘Aseptic Non Touch Technique’ (ANTT) as the chosen method for any aseptic procedure that breeches the body’s natural defenses (The ASAP, 2015). All staff involved in aseptic procedures must complete ANTT training and be assessed as competent or provide written evidence of ANTT competence from another NHS organization. All staff have a role in ensuring their own and others’ compliance with ANTT.” These principles of ANTT include the concepts that asepsis is the aim for all invasive clinical procedures and should be standardized with training incorporated within all healthcare worker training.

ANTT education is achieved with attention to patient procedures and supplies used within those procedures for key-site and key-part protection from microorganisms. Basic precepts of always washing hands prior to the procedure, never contaminate covered key parts, touch other supply items as needed within the clean field and take appropriate infection prevention precautions, are emphasized in ANTT training. Within this ANTT model procedures are identified as Standard ANTT and Surgical ANTT which serve to establish the type of procedure for general asepsis or surgical critical sterile practices.

The Standard ANTT approach is applied to procedures such as peripheral intravenous (IV) catheter insertions, venipuncture, and wound care, that are considered general critical procedures, short in duration (>20 minutes), not significantly invasive or technically complicated, and involve minimal key parts. The focus of Standard ANTT is that key sites and key parts are protected during the procedure, but maximum sterile barriers are not required. Key sites to avoid touching without sterile gloves include insertion and puncture areas of skin, subcutaneous port (port) access sites, and any open wounds. Key parts that should not have touch contamination include all items that must remain sterile without touching such as steel needles, IV catheter needles, syringe tips, IV tubing male connections, port access site, and any supply item with extra capped end designed to maintain sterility. With Standard ANTT an micro critical field is established for all supply items, but clean gloves, supplies and clean procedures are used, with attention to not touching key sites and parts. Even with these procedures, if touching is necessary, as with touching the skin after skin antisepsis for a peripheral IV, sterile gloves should be used.

Surgical ANTT approach is a higher-level practice used for longer clinically invasive procedures when maintaining sterility is vital using sterile gloves, a critical aseptic and sterile field with sterile drapes, and maximum sterile barriers may be required. Examples of Surgical ANTT are critical fields that are used during central catheter insertions, surgical procedures, and extensive debridement of a wound. Only sterilized equipment and supplies are added to the critical field for Surgical ANTT.

Each facility should consider implementing ANTT training for all clinical staff in accordance with the 2021 Infusion Nursing Standards of Practice Standard 18 that provides greater detail of the ANTT framework and definitions. Research supports the use of simulation for reducing contamination, increasing understanding and performance compliance with patient procedures. Much confusion is present among clinicians for the management of procedures, when to use sterile versus clean gloves, how to establish a clean working area, and when to use sterile drapes. Education on ANTT would provide clearer direction allowing practice and explanation of the application of Standard versus Surgical ANTT, noncritical and critical fields, key sites, and parts to patient procedures resulting in improved safety.

Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC, is the chief executive officer at PICC Excellence, Inc., a research member of the Alliance for Vascular Access Teaching and Research (AVATAR) Group, and an adjunct associate professor at Griffith University in Brisbane, Australia.

References:

Association for Safe Aseptic Practice. The ANTT Approach. http://www.antt.org/ANTT_Site/ANTT-Approach.html
Clare S, Rowley S. Implementing the Aseptic Non Touch Technique (ANTT®) clinical practice framework for aseptic technique: a pragmatic evaluation using a mixed methods approach in two London hospitals. Journal of infection prevention. 2018;19(1):6-15.
Flynn J, Keogh S, Gavin N. Sterile v Aseptic Non-touch Technique for Needleless Connector Care on Central Venous Access Devices in a Bone Marrow Transplant Population: A Comparative Study. European Journal of Oncology Nursing. Jun 6 2015;19(6):694-700. doi:10.1016/j.ejon.2015.05.003
Gorski LA, Hadaway L, Hagle ME, et al. Infusion Therapy Standards of Practice, 8th Edition. Journal of Infusion Nursing. 2021;44(1S):S1-S224. doi:10.1097/nan.0000000000000396
Rowley S, Clare S. Improving Standards of Aseptic Practice Through and ANTT Trust-wide implementation Process: A Matter of Prioritisation and Care. Journal of Infection Prevention. 2009;10(1_suppl):S18-S23.
Rowley S, Clare S. Aseptic Non Touch Technique (ANTT): Reducing Healthcare Associated Infections (HCAI) by Standardising Aseptic Technique with ANTT across Large Clinical Workforces. American journal of infection control. 2011;39(5):E90.
Rowley S, Clare S. ANTT: a standard approach to aseptic technique. Nursing times. 2011;107(36):12-14.
Rowley S, Clare S. Standardizing the Critical Clinical Competency of Aseptic, Sterile, and Clean Techniques with a Single International Standard: Aseptic Non Touch Technique (ANTT®). Journal of the Association for Vascular Access. 2019;24(4):12-17.
Rowley S, Clare S, Macqueen S, Molyneux R. ANTT v2: An Updated Practice Framework for Aseptic Technique. British Journal of Nursing. 2010;19(5):S5.

 

Survey Reflects Clinicians’ Struggles with UGPIV Practices and COVID-19

By Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC

This column originally appeared in the March 2021 issue of Healthcare Hygiene magazine.

In an effort to gain a greater understanding of the education, policies and impact of the COVID-19 pandemic issues associated with ultrasound guided peripheral catheter (UGPIV) insertions and safety practices, a follow-up survey was conducted by this author and distributed as an adjunct to a previously published survey (Moureau 2020). More than 1,400 voluntary responses were received including a remarkable 1,171 text (SMS) comments from clinicians describing their clinical experiences. This overwhelming and unexpected response suggested the need to share feelings and frustrations that ran high, during this past, unprecedented year.

While there was no expectation that UGPIV education practices for clinicians would continue during the crisis of COVID-19, there was interest in understanding the preparation that occurred prior to the outbreak. The question to clinicians was: prior to performing UGPIV insertions did you receive education/training? And, as a follow-up, what type of training was received (selection of all that applied)? Included choices were: No training, on the job, online, lecture, hands-on, supervised insertions, and/or competency measurement of success. The vast majority (85.8 percent yes, 14 percent no) stated yes, they had received training, however 90 percent selected “on the job training,” or “no training/learned it myself.”

With the ability to select multiple types of training, most indicated supervised insertions and hands-on simulation as part of their education. Almost half responded that they had received online education (43.4 percent), with less than one-third (27 percent) mentioning a lecture format. It was encouraging to see that almost half (44.4 percent) of respondents commented that their training included a measurement of competency associated with successful insertions. As the number of UGPIV insertions increase, and more and more clinicians take on this skill, there will be a need for consistent education and measurement of competency with the hope that this will become the norm and be standardized in terms of educational requirements.

As with education, this researcher was interested in whether or not facilities had policies for UGPIV practices. In this survey 61 percent stated yes (there were policies in place), and 38 percent no to policies on this practice. A quarter of the group (23%) felt that UGPIV policies were not needed, and 47 percent said UGPIV were included within the peripheral intravenous catheter policies. Another 51 percent stated their policy had an educational requirement, while 44 percent also said success and competencies were included. Notably, 25 percent of respondents skipped this question, leaving us to wonder if they didn’t know, or would have responded there were not any policies for UGPIVs. While policies may not be a requirement for all procedures, it seems reasonable to assume a relatively new skill and invasive procedure would have specified guidance and policies for who is qualified, how they become qualified, and safety practices that guide each UGPIV insertion. Among these safety practices are the standard aseptic technique measures, disinfection of equipment, and use of protective supplies used during the procedure.

The survey further explored the impact of COVID-19 on the availability and use of safety and protective measures for UGPIV insertions. In this section the responses included not only answers to the questions but a high number of text responses. Answers to the question on increases in number of UGPIV insertions during COVID-19 were somewhat split, no (57 percent) and yes (43 percent). While 88 percent said aseptic supplies were available, half of the respondents stated there were greater challenges with aseptic technique during the pandemic. A large number (65 percent to 73 percent) said the level of transducer/probe protection and disinfection did not change.

But 535 participants responded by explaining their experiences and what did change. Comments included: “Due to short supplies of cleaners we changed brands and/or methods of cleaning and also had to choose very carefully who needed UGPIV insertions,” and “We were unable to get sterile probe cover sleeves so we ordered sterile gel packets and used large [dressings] to cover probe” or “for UGPIV we could use either [a dressing] in our start kit or a sterile probe cover. The factors and changes cited were “lack of supply, staff, and management support; working under pressure; quantity vs quality.” It appears, based on the comments, that many adjustments were required, not all positive such as “we are not provided probe covers due to cost; using some makeshift or leftover probe covers from PICC insertions on known COVID patients” and “probe covers not always kept in stock; team members not disinfecting ultrasound as required.”

Many responses reflected good or improved practices “enough PPS and supplies; always thorough cleaning” and we were always using aseptic non touch technique ANTT and had dedicated equipment for COVID unit; difficulty getting sterile gel but borrowed from other units; having everyone masked helped with infections during insertions.” These comments displayed thought and attention to the need for protection and application of guidelines, even during a crisis.

The last question in the survey asked for comments about the impact of COVID-19 and their experiences. Almost half responded (636 statements) such as “made most more diligent in care and maintenance of ultrasounds,” “I learned to love my mask,” “very challenging but we made it through,” “always practice safety measures all the time,” “our overall patient volume increased dramatically during COVID-19, we always had necessary supplies but could have used more trained clinicians,” takes a bit longer to get everything ready and we are unable have additional supplies close at hand taking longer to have someone bring you something to the door,” “increased time with preparation and cleaning,” “force the clinician to be a little more aware of their sterile technique and practice,” “at some point I felt overwhelmed,” “more courage to help that patient who needed vascular access, meticulous about infection control and maintaining sterile technique,” “to limit repetitive vascular access visits we placed extended dwell as much as possible,” no formal education or expectation for staff wanting to use ultrasound for PIV insertions, ER staff begging for education, but hours are not supported due to cost, they pass bad habits on to each other, many variable supply practices,” and “masks required for all, number of visitors educed and feel like we did not change our care of patients.”

So many heartfelt responses, with positives and negatives, showed the level of concern and feeling for the situation, the patients and the staff. Statements like “very difficult time, stress levels have made work harder, nurses are angrier with each other and burnout has significantly increased” compel us all to consider the impact on the daily struggles of the clinician within this pandemic.

While this follow-up survey provided a look into the education, policies and practices with UGPIV, it also gave us a much closer look into the inner workings and feelings of those on the forefront of patient care with COVID-19. The thoughts and concerns expressed in the added text responses were too many to include but offered opportunities for improvement and hope that safety practices were thoughtfully applied whenever possible and that concern for the patient was ever present. Education and policies help to establish a foundation for those safety practices. But, in the end, the basic concepts of asepsis, the need for protection and disinfection must be ingrained into everyday activities, especially during a pandemic.

Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC, is the CEO of PICC Excellence, Inc., adjunct associate professor, Alliance for Vascular Access Teaching and Research (AVATAR) Group, Menzies Health Institute Queensland, Griffith University Brisbane.

Reference: Moureau N, Gregory E G. Survey of ultrasound-guided peripheral intravenous practices: a report of supply usage and variability between clinical roles and departments. British Journal of Nursing. 2020 Oct 22;29(19):S30-8.

Reducing Catheter Occlusions and Failure

By Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC

Editor's note: This column originally appeared in the February 2021 issue of Healthcare Hygiene magazine.

Catheter occlusion and related complications are estimated to affect nearly 80 percent of peripheral and central vascular access catheters (Steere, 2018). Obstruction complications include loss of patency, phlebitis, and infiltration in PIV catheters. Blood is the first body fluid which touches vascular access catheter materials, such as urethane and Teflon. When the synthetic catheter material meets blood, a layer of plasma proteins absorbs onto the catheter surface and triggers a complex series of biological responses including protein absorption, platelet adhesion, coagulation and thrombosis.

The thrombotic deposits of platelets and fibrin mesh that develop within and around catheters are the result of a natural process that impact catheters upon insertion and throughout treatment as the catheter is used for infusions and blood draws. When blood is pulled back into the catheter, intentionally or functionally, during syringe connection/disconnection, patient movement, or pressure changes, red blood cells adhere to the inside of the catheter creating suboptimal flow. Such occlusions can lead to patency loss and device replacement or removal, all of which can negatively impact therapeutic outcomes. Blood coagulation and platelet adhesion to intraluminal catheter surfaces remain one of the largest contributors to vascular access catheter dysfunction by producing partial and total IV catheter occlusion.

Other complications associated with build-up within a catheter include vein thrombosis, venous inflammation, and catheter-related bloodstream infections (CRBSIs). Reflux of blood into the catheter, especially small diameter catheters, contributes to partial and complete occlusions, has a relationship to catheter associated infection, and may be a contributing factor in venous thrombosis development. Preventing occlusions, then, becomes a chain of events that presents an opportunity for improving both patient outcomes and catheter function that impacts healthcare facilities’ bottom line.

The literature contains studies that have examined various methods to reduce catheter failure caused by blood reflux including the use of thrombolytics (Dillon, et al. 2008; Ernst, et al. 2014; Helm, 2015 and 2019). Other studies have sought to evaluate the impact of blood reflux-controlling valves on occlusions and infiltrate complications (Jasinsky, 2009; Johnston, et al. 2014; Steere, et al. 2018). Still others have examined the various design features of how valves function to limit or eliminate blood reflux into catheters (Steere, 2016; Schilling, et al. 2006). A Cochrane Protocol published in 2019 established reflux-controlling valve function by outlining a systematic review process for validating catheter materials and reduced complications (Schults, et al. 2019).

According to Rosenthal, in 2020, anti-reflux needlefree connector designs incorporate a bidirectional fluid-control valve designed to restrict fluid movement on connection and prevent unplanned reflux into the intravascular catheter during infusion, connection, disconnection and patient changes in intra-thoracic pressure. A reflux-controlling valve is an internal mechanism engineered into catheters and/or needleless connectors; these valves are designed to control fluid movement, most notably to prevent backwards flow. Design and performance vary by device type. Whether the valve technology is integrated into the catheter, or integrated into the needleless connector technology, these devices reduce clinician dependency on proper clamping sequence that blocks reflux and greatly reduces the blood movement from physiological pressure changes that naturally occur inside the patient’s vasculature. More research is needed to establish more substantial conclusions on occlusion causation, the impact of reflux on occlusion, and the prevention of reflux-related occlusion.

Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC, is the owner and chief executive officer at PICC Excellence, Inc., an active clinician with Infinity Infusion Nursing, a research member of the Alliance for Vascular Access Teaching and Research (AVATAR) Group, and an adjunct associate professor at Griffith University in Brisbane, Australia.

Bibliography:
Barreras F, Cabeza M, de Terán LC. Clinical efficacy and safety of Securflux®, an anti-reflux device for intravenous infusion. J Vasc Access. 2013;14(1):77-82.

Btaiche I, Kovacevich D, Khalidi N, Papke L. The Effects of Needleless Connectors on Catheter-related Bloodstream Infections. Am J Infect Control. 2011;39(4):277-283. doi:10.1016/j.ajic.2010.07.011.

Buehrle DC. A prospective, randomized comparison of three needleless IV systems used in conjunction with peripherally inserted central catheters. JAVA. 2004;9(1):35-38.

Cabrero J, Orts MI, López-Coig ML, Velasco ML, Richart M. Variability in the clinical practice of maintaining the patency of peripheral intravenous catheters. Gac Sanit. 2005;19:287-293.

Casey AL, Karpanen TJ, Nightingale P, Elliott TS. (2018). The risk of microbial contamination associated with six different needle-free connectors. Br J Nurs. 2018;27(2):S18-S26.

Chernecky C, Casella L, Jarvis E, Macklin D, Rosenkoetter M. Nurses’ Knowledge of Intravenous Connectors. J Res Nurs. 2010;15(5):405-415.

Dillon MF, Curran J, Martos R, et al. Factors that affect longevity of intravenous cannulas: a prospective study. QJM. 2008;101(9):731-735.

Elli S, Abbruzzese C, Cannizzo L, Lucchini A. In vitro evaluation of fluid reflux after flushing different types of needleless connectors. J Vasc Access. 2016;17(5):429-434. doi:10.5301/jva.5000583.

Ernst FR, Chen E, Lipkin C, Tayama D, Amin AN. Comparison of hospital length of stay, costs, and readmissions of alteplase versus catheter replacement among patients with occluded central venous catheters. J Hosp Med. 2014;9(8):490-6.

Hadaway L. Needleless Connectors: Improving Practice, Reducing Risks. JAVA. 2011;16(1):20-33.

Hawthorn A, Bulmer AC, Mosawy S, Keogh S. Implications for maintaining vascular access device patency and performance: Application of science to practice. J Vasc Access. 2019;20(5):461-470.

Helm RE, Klausner JD, Klemperer JD, Flint LM, Huang E. Accepted but unacceptable: peripheral IV catheter failure. J Infus Nursing. 2015;38(3):189-203.

Helm RE. Accepted but Unacceptable: Peripheral IV Catheter Failure: 2019 Follow-up. J Infus Nursing. 2019;42(3):149-50.

Hitchcock J. Preventing intraluminal occlusion in peripherally inserted central catheters. Br J Nursing. 2016;25(19):S12-S18.

Hull GJ, Moureau NL, Sengupta S. Quantitative assessment of reflux in commercially available needle-free IV connectors. J Vasc Access. 2018;19(1);12-22. doi:10.5301/jva.5000781

Jasinsky L, Wurster J. Occlusion reduction and heparin elimination trial using an antireflux device on peripheral and central venous catheters. J Infus Nurs. 2009;32(1):33-39. doi:10.1097/NAN.0b013e3181921c56

Johnston AJ, Streater CT, Noorani R, Crofts JL, Del Mundo AB, Parker RA. The effect of peripherally inserted central catheter (PICC) valve technology on catheter occlusion rates--the ‘ELeCTRiC’ study. J Vasc Access, 2012;13(4):421-425. doi:10.5301/jva.5000071

Macklin, D. (2014). The Impact of IV Connectors on Clinical Practice and Patient Outcomes. JAVA. 2014;15(3):139. doi:10.2309/java.15-3-4

Rosenthal VD. Clinical impact of needle-free connector design: A systematic review of literature. J Vasc Access. 2020;0(0):1129729820904904.

Schilling S, Doellman D, Hutchinson N, Jacobs BR. The impact of needleless connector device design on central venous catheter occlusion in children: a prospective, controlled trial. JPEN J Parenter Enteral Nutr. 2006;30(2):85-90.

Schults JA, Kleidon T, Petsky HL, Stone R, Schoutrop J, Ullman AJ. Peripherally inserted central catheter design and material for reducing catheter failure and complications. Cochrane Database of Systematic Reviews. 2019(7). DOI: 10.1002/14651858.CD013366.

Steere L, Rousseau M, Durland L. Lean Six Sigma for Intravenous Therapy Optimization: A Hospital Use of Lean Thinking to Improve Occlusion Management. JAVA. 2018;23(1):42-50.

Steere L. Reduction in Central Venous Catheter Occlusions: Impact of a Pressure Activated Anti-reflux Connector With a Vascular Access Nurse Algorithm in Assessing Occluded Catheters. JAVA. 2016;21(4):256-257.

Williams A. Catheter occlusion in home infusion: the influence of needleless connector design on central catheter occlusion. J Infus Nursing. 2018;41(1):52-57.

 

The Value of Research and Education: Impact on Patient Safety

By Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC

This column originally appeared in the December 2020 issue of Healthcare Hygiene magazine.

Research and education are essential components of any healthcare organization to provide clinical knowledge to healthcare workers that establish practices and procedures ensuring patient safety. Research is used to identify gaps in practice that indicate the need for improvement, to answer questions for the best practice procedures, and to validate practices and products used within healthcare settings. Investigation of clinical practices for incidence and causes of negative patient outcomes often yields solutions that can be applied in the clinical setting. In addition, many new products are available claiming to solve problems and reduce complications. Product evaluation must be performed to validate claims in the clinical setting. This product research provides additional value to other institutions, when results are published, assisting them in establishing a value basis for products.

Patient complications increase the cost of healthcare. Research provides valuable insights, based on the results of investigations, that often have a considerable impact on cost reduction, improving efficiency of care and other positive effects of improved patient satisfaction. Education, performed in conjunction with research, has been shown to have significant value in reducing complications and cost. Inconsistencies in procedures, failure to follow policies, lack of standardization all contribute to poor quality and negative outcomes which drive up cost. With the increase in technology and essential requirements for vascular access devices for most patients the cost of health care is rising and the impact of serious complications increasing.

Educational program initiatives have been shown to be necessary to outcome improvement and cost-effective components of high-quality healthcare. Nursing and medical professionals receive education in the academic setting and during orientation to a new healthcare facility. Whether initiated by the individual or the institution, frequency and type of education and training following graduation and completion of orientation is often sporadic without defined requirements. Provision of education and clinical training within healthcare facilities are dictated by policy changes and performance improvement initiatives. As noted by Bianco and associates and supported by Marschall, et al. guidelines on strategies to prevent infections, well organized educational programs to continually train and increase competence of clinicians, for those involved with insertion and care of vascular access devices, is critical to the success of infection prevention methods. As research is incorporated into guidelines and standards, education provides a means to disseminate the information to the working clinician promoting application at the bedside.

The infrastructure of healthcare facilities should include resources to provide consistent education, training and procedural simulation to all staff including programs on basic practices of asepsis, infection prevention, insertion, and maintenance of all intravenous and intra-arterial devices. More emphasis is needed to expand the role and responsibility of all clinicians to include research and increase the emphasis on education within their current job functions. Periodic re-training should be performed following gap analysis of deficiencies in procedures or practices. In addition, clinicians should be provided information on device indications and appropriateness to aid in selection of the lowest risk access device that will effectively deliver the therapy. Encouraging application of research and accountability for education, training, and competency with credentialing requirements initially, prior to independent insertions, and periodically as a means of evaluation will improve and increase patient safety with procedures.

Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC, is the chief executive officer at PICC Excellence, Inc., a research member of the Alliance for Vascular Access Teaching and Research (AVATAR) Group, and an adjunct associate professor at Griffith University in Brisbane, Australia.

References:
1. Bianco A, Coscarelli P, Nobile CG, Pileggi C, Pavia M. The reduction of risk in central line-associated bloodstream infections: knowledge, attitudes, and evidence-based practices in health care workers. American journal of infection control. 2013 Feb 1;41(2):107-12.
2. Coopersmith CM, Rebmann TL, Zack JE, Ward MR, Corcoran RM, Schallom ME, Sona CS, Buchman TG, Boyle WA, Polish LB, Fraser VJ. Effect of an education program on decreasing catheter-related bloodstream infections in the surgical intensive care unit. Critical care medicine. 2002 Jan 1;30(1):59-64.
3. Eggimann P, Harbarth S, Constantin MN, Touveneau S, Chevrolet JC, Pittet D. Impact of a prevention strategy targeted at vascular-access care on incidence of infections acquired in intensive care. The Lancet. 2000 May 27;355(9218):1864-8.
4. Forsetlund L, Bjørndal A, Rashidian A, Jamtvedt G, O'Brien MA, Wolf FM, Davis D, Odgaard‐Jensen J, Oxman AD. Continuing education meetings and workshops: effects on professional practice and health care outcomes. Cochrane database of systematic reviews. 2009(2).
5. Ivers N, Jamtvedt G, Flottorp S, Young JM, Odgaard‐Jensen J, French SD, O'Brien MA, Johansen M, Grimshaw J, Oxman AD. Audit and feedback: effects on professional practice and healthcare outcomes. Cochrane database of systematic reviews. 2012(6).
6. James BC, Savitz LA. How Intermountain trimmed health care costs through robust quality improvement efforts. Health Affairs. 2011 Jun 1;30(6):1185-91.
7. Lobo RD, Levin AS, Gomes LM, Cursino R, Park M, Figueiredo VB, Taniguchi L, Polido CG, Costa SF. Impact of an educational program and policy changes on decreasing catheter-associated bloodstream infections in a medical intensive care unit in Brazil. American journal of infection control. 2005 Mar 1;33(2):83-7.
8. Marschall J, Mermel LA, Classen D, Arias KM, Podgorny K, Anderson DJ, Burstin H, Calfee DP, Coffin SE, Dubberke ER, Fraser V. Strategies to prevent central line–associated bloodstream infections in acute care hospitals. Infection Control & Hospital Epidemiology. 2008 Oct;29(S1):S22-30.
9. Mohapatra S, Kapil A, Suri A, Pandia MP, Bhatia R, Borkar S, Dube SK, Jagdevan A, George S, Varghese B, Dabral J. Impact of Continuous Education and Training in Reduction of Central Line-associated Bloodstream Infection in Neurointensive Care Unit. Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine. 2020 Jun;24(6):414.
10. O'Brien MA, Rogers S, Jamtvedt G, Oxman AD, Odgaard‐Jensen J, Kristoffersen DT, Forsetlund L, Bainbridge D, Freemantle N, Davis D, Haynes RB. Educational outreach visits: effects on professional practice and health care outcomes. Cochrane Database of systematic reviews. 2007(4).
11. Rosenthal VD, Guzman S, Pezzotto SM. Effect of an infection control program using education and performance feedback on rates of intravascular device-associated bloodstream infections in intensive care units in Argentina. American journal of infection control. 2003 Nov 1;31(7):405-9.
12. Sherertz RJ, Ely EW, Westbrook DM, Gledhill KS, Streed SA, Kiger B, Flynn L, Hayes S, Strong S, Cruz J, Bowton DL. Education of physicians-in-training can decrease the risk for vascular catheter infection. Annals of internal medicine. 2000 Apr 18;132(8):641-8.
13. Warren DK, Zack JE, Mayfield JL, Chen A, Prentice D, Fraser VJ, Kollef MH. The effect of an education program on the incidence of central venous catheter-associated bloodstream infection in a medical ICU. Chest. 2004 Nov 1;126(5):1612-8.

 

Patient-Focused Care with Vascular Access Bundles

By Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC

Editor's note: This column originally appeared in the November 2020 issue of Healthcare Hygiene magazine.

Most patients entering acute-care receive therapies via an intravenous access device. The success of therapy is, to some degree, contingent on the success of the device used to deliver the medications. Improving success and function of vascular access device is done through the application of research for key practices points by clinicians and administrators. Research can be effectively integrated into a bundle of patient care measures to establish, maintain, and insure the most positive outcomes. Best practice bundles for vascular access devices have resulted in infection reduction, minimized supply usage, improved through-put of patient care and reduced length of stay that puts the well-being of the patient first for a patient focused care approach.

A care bundle is a structured way of applying research and recommendations for improving the processes of care and patient outcomes. The care bundle is described as a small, straightforward set of evidence-based practices of generally three to five components that, when performed collectively and reliably, have been proven to improve patient outcomes according to the Institute for Healthcare Improvement (IHI) (http://www.ihi.org/Topics/Bundles/Pages/default.aspx).1 Most important to this issue is the concept that a bundle is a cohesive unit of steps must all be completed to succeed; the “all or none” feature is the source of the bundle’s power.2-4 Other bundle criteria include that only practices based on level 1 or A graded evidence should be included in a bundle.

Evidence is expanding in support of specialized vascular access assessment, selection, insertion of vascular access devices with practices and teams that reduce the number of unsuccessful insertion attempts, catheter failure, and minimize complications. A recent study “Reaching One Peripheral Intravenous Catheter (PIVC) Per Patient Visit With Lean Multimodal Strategy: the PIV5Rights Bundle” reported how a bundle of practices led to improved patient outcomes with PIVCs and significant financial savings.5 Elements of the bundle that contributed to their success included the right proficient nurse inserter, the right insertion method, the right vein and catheter selection, the right supplies and technology, and the right assessment for care and maintenance. Each of these right practices are supported by a body of A through D graded evidence.6 The evidence for each of the individual components of the care bundle must be considered separately, but ultimately the bundle is a combination of actions, that when all are applied, result in better outcomes for the patient and healthcare facility.

Integration of a skilled and proficient inserter to assess, select the best insertion site and method, choose the best catheter and length for the therapy and individual patient characteristics, organize the most appropriate supplies, and use ultrasound when needed, creates the best scenario for patient intravenous access. The results of the PIV5Rights study are consistent with these components and reflect a positive impact of the proficient ultrasound trained nurses for fewer number of attempts, longer dwell time for intravenous catheters, with meaningful differences in fewer complications or failed PIVCs when comparing the specialist to the generalist nurse.

Financially, this type of proficient nurse and care bundle makes sense. The impact of the use of the generalist model for peripheral catheter insertions represents lost revenue and waste in terms of high supply usage with multiple attempts and shorter dwell time. The global financial burden for premature PIVC failure is conservatively estimated to range from $9.8 to $17.5 billion annually by calculating the reported PIVC failure rates of 35%-50%, multiplied by the estimated 1- billion PIVCs inserted each year worldwide, and integration of the published uncomplicated PIVC procedure cost range of $28-$35.6.7,8 Hospitals are under intense pressure to improve the quality of patient care while reducing total cost of care. One of the primary strategies to accomplish this is to use evidence-based practices such as the care bundle to minimize the unnecessary clinical variation that regularly occurs with invasive procedures.

Application of these type of bundled patient focused approaches result in the overall improvement of the patient experience. The goal in provision of healthcare is to promote health. The best practices identified in the PIV5Rights care bundle demonstrate a process for improving patient satisfaction, while reducing complications and cost. The Alliance for Vascular Access Teaching and Research (AVATAR), a research group based in Australia, says it best with their ‘Making Complications History’ campaign. 9 This group performs randomized controlled trials and research designed to guide practices to improve patient safety with vascular access devices. Care bundles and education for clinicians on the results of this type of research contribute to healthcare improvement establishing a patient focused approach that may lead to the eradication of vascular access complications.

Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC, is the chief executive officer at PICC Excellence, Inc., a research member of the Alliance for Vascular Access Teaching and Research (AVATAR) Group, and an adjunct associate professor at Griffith University in Brisbane, Australia.

References:
1. Sacks G, Diggs B, Hadjizacharia P, Green D, Salim A, Malinoski D. Reducing the Rate of Catheter-associated Bloodstream Infections in a Surgical Intensive Care Unit Using the Institute for Healthcare Improvement Central Line Bundle. American Journal of Surgery. 2014;207(6):817-823.
2. Lavallée JF, Gray TA, Dumville J, Russell W, Cullum N. The effects of care bundles on patient outcomes: a systematic review and meta-analysis. Implementation Science. 2017;12(1):142.
3. Sayin Y. What is A Care Bundle? Florence Nightingale Hemşirelik Dergisi. 2017;25(2):145-151.
4. Fulbrook P, Mooney S. Care bundles in critical care: a practical approach to evidence-based practice. Nursing in critical care. 2003;8(6):249-255.
5. Steere L, Ficara C, Davis M, Moureau N. Reaching One Peripheral Intravenous Catheter (PIVC) Per Patient Visit with Lean Multimodal Strategy: the PIV5Rights™ Bundle. Journal of the Association for Vascular Access. 2019;24(3):31-43.
6. Moureau N, and Steere L. Theoretical Methodology and Systematic Evidence Review of the PIV5Rights Care Bundle. Association for Vascular Access at Your Fingertips Virtual Conference 2020. Poster Presentation.
7. Helm RE, Klausner JD, Klemperer JD, Flint LM, Huang E. Accepted but Unacceptable: Peripheral IV Catheter Failure. Journal of Infusion Nursing. 2015;38(3):189-203.
8. Alexandrou E, Ray-Barruel G, Carr PJ, et al. Use of Short Peripheral Intravenous Catheters: Characteristics, Management, and Outcomes Worldwide. Journal of hospital medicine. 2018;13(5).
9. AVATAR. The High Five Campaign: Making Vascular Access Complications History.
2017; accessed 2020 http://www.avatargroup.org.au/the-high-five-campaign.html

Patient Safety Enhanced Through Vascular Access Specialist Care

By Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC

Editor's note: This column originally appeared in the October 2020 issue of Healthcare Hygiene magazine.

Vascular access devices (VAD) are used daily in almost all inpatient settings with a range of healthcare professionals sharing the responsibility for insertion, management, and removal of VADs. Vascular access catheter insertions are accepted as common invasive clinical procedures that expose patients to risks such as procedural pain, bruising, bleeding, vessel depletion, nerve injury, or infection, and, in extreme cases, death.(1,2,3) There is much variation and fragmentation in practices suggestive of opportunities to reduce risk and improve patient care.(4) One action to achieve positive outcomes is by shifting vascular access ownership to specially trained clinicians for (i) assessment, (ii) insertion, (iii) care maintenance, and (iv) education as is seen with vascular access or infusion teams. We have seen in the COVID-19 crisis an increased urgency for VAD placement and innovation in maintaining infusions outside patient rooms. Ensuring the placement of a reliable intravenous device in an optimal location designed to perform without complications was a high priority during this time of crisis.

We know the Centers for Disease Control and Prevention (CDC) has emphasized specialized teams as a method to reduce infections, complications, and cost of infusion therapy.(5) A Cochrane systematic review defines vascular access specialists and teams (i.e., VAS or VAST) as any of the following; infusion teams, intravenous teams, individual specialists (nurse, doctor, respiratory therapist, radiological technologist, nurse practitioner, and physician assistant) who have knowledge and skills, formal training, and who frequently perform insertion or manage VADs.(6) Teams and individual specialist functions will vary, but commonly include the insertion and maintenance of some or all vascular access devices. Given the growing complexity in patient needs, a unique specialist discipline, namely the vascular access specialist (VAS), is needed to deliver efficiently and safely the prescribed intravenous treatment plan.

The No. 1 fear of patients entering a hospital is fear of pain associated with needles. The evidence to date is suggestive that the highest achieving system of initiating and delivering treatment to patients in acute care is tied to a purpose-driven group of skilled individuals and the processes that guide their practices.(7) Starting an intravenous device is often associated with repeated attempts following insertion failures leading to increased patient risk of complications. Evidence supports the value of specially trained individuals that have greater first-time success with fewer insertion attempts, and lower infection rate associated with intravenous or arterial device insertion.(11) Patients indicate that inadequate skill level of those performing these types of procedures is a source of great dissatisfaction, while use of technology and increased skills of the VAS promotes higher satisfaction.(8,9) According to da Silva in 2010, use of a specialized team increased first attempt success achieving 84 percent with one peripheral intravenous catheter (PIV) attempt and lower complications.(10) Complications associated with VADs relate to the skill and knowledge of the operator for insertion(11-14) and for post-insertion complications relate to maintenance by knowledgeable clinicians and patient specific risk factors.(15-18) Specialized education has led to infection prevention practices that reduce complications.(19-21) Advanced practice nurses and those teams receiving specialized training to perform insertions of all CVADs, working in collaboration with medical providers, offer valuable contributions to patient safety by performing ultrasound guided insertions with low incidence of complications.(22-27)

Standards for infusion therapy call for an increase of teams to perform CVAD insertion, ultrasound guided peripheral insertions for difficult access patients, maintenance, and removal of devices when no longer needed to promote patient safety and better outcomes. Other functions embraced by these specialists may include patient access for difficult blood draws, use of ultrasound guidance for any or all of the insertion and assessment functions, dressing changes for central catheters, careful daily assessment and monitoring of dressing and insertion site for complication identification, and daily evaluation of catheter necessity with removal of unnecessary catheters. Additionally, they provide a professional point of care for education and resource of VAD queries for device maintenance and management.

Patient-focused safety initiatives should apply evidence of improved outcomes such as those represented in establishing and maintaining effective vascular access teams. (28) The value of specialized teams for insertion and management of vascular access is demonstrated through numerous publications in a variety of research designs. (6,10,15,16) Although there are currently no randomized controlled clinical trials that support the benefits of teams, the recommendation of the CDC and others worldwide guidelines continue to support specialists as a method to reduce infections and complications associated with vascular access devices.(29) Supported by the concepts of vessel health and preservation, the application of vascular access individuals or teams as a consultative specialists in every hospital for insertion and management of vascular access devices could significantly aid the pursuit of making Central Line Associated Bloodstream Infections (CLABSIs) and VADs complications history.(30)

Nancy Moureau, RN, PhD, CRNI, CPUI, VA-BC, is the chief executive officer at PICC Excellence, Inc., a research member of the Alliance for Vascular Access Teaching and Research (AVATAR) Group, and an adjunct associate professor at Griffith University in Brisbane, Australia.

References:

1. Brunelle D. Impact of a dedicated infusion therapy team on the reduction of catheter- related nosocomial infections. J Infus Nurs. 2003;26(6):362-366.
2. Hawes M. A proactive approach to combating venous depletion in the hospital setting. J Infus Nurs.. 2007;30(1):33-44.
3. Sato A, Nakamura I, Fujita H, et al. Peripheral venous catheter-related bloodstream infection is associated with severe complications and potential death: a retrospective observational study. BMC Infect Dis.2017;17(1):434.
4. Castro-Sanchez E, Charani E, Drumright L, Sevdalis N, Shah N, Holmes A. Fragmentation of care threatens patient safety in peripheral vascular catheter management in acute care--a qualitative study. PLoS One. 2014;9(1):e86167.
5. O'Grady N, Alexander M, Burns L, et al. Centers for Disease Control and Prevention: Guidelines for the Prevention of Intravascular Catheter-related Infections. Clin Infectious Diseases. 2011;52(9):e162-e193.
6. Carr P, Higgins N, Cooke M, Mihala G, Rickard C. Vascular Access Specialist Teams for
Device Insertion and Prevention of Failure. Cochrane Database of Systematic Reviews
2014. 2014(12).
7. Hadaway L, Dalton L, Mercanti-Erieg L. Infusion teams in acute care hospitals: call for a business approach: an infusion nurses society white paper. J Infus Nurs. 2013;36(5):356-360.
8. Kelly L. The experience of patients living with a vascular access device [Internet]: IVUPDATE; 2017. Podcast. Available from: https://us.ivoox.com/en/the-experience-of-patients- living-with-a-vascular-audios-mp3_rf_20838415_1.html
9. Harpel J. Best practices for vascular resource teams. J Infus Nurs.2013;36(1):46-50.
10. da Silva GA, Priebe S, Dias FN. Benefits of Establishing an Intravenous Team and the
Standardization of Peripheral Intravenous Catheters. J Infus Nurs. 2010;33(3):156-160.
11. Fong N, Holtzman S, Bettmann M, Bettis S. Peripherally inserted central catheters:
outcome as a function of the operator. J Vasc Interv Radiol.2001;12(6):723-729.
12. McGee D, Gould M. Preventing complications of central venous catheterization. N Engl J Med. 2003;348(12):1123-1133.
13. Lennon M, Zaw N, Pöpping D, Wenk M. Procedural complications of central venous catheter insertion. Minerva Anestesiol.2012;78(11):1234-1240.
14. Mourad M, Kohlwes J, Maselli J, Auerbach A. Supervising the supervisors—procedural training and supervision in internal medicine residency. J Gen Intern Med.2010;25(4):351-356.
15. Gianino M, Brunt L, Eisenberg P. The impact of nutritional support team on the cost and management of multilumen central venous catheters. J Infus Nurs. 1992;15(6):327-332.
16. Scalley R, Van C, Cochran R. The impact of an IV team on the occurrence of intravenous- related phlebitis: a 30-month study. 1992;15(2):100-109.
17. Maki D, Ringer M. Risk Factors for infusion-related phlebitis with small peripheral venous catheters: a randomized controlled trial. Ann Intern Med.1991;114(10):845-854.
18. Soifer N, Borzak S, Edlin B, Weinstein R. Prevention of peripheral venous catheter complications with an intravenous therapy team: a randomized controlled trial. Arch Intern Med.1998;158(5):473-477.
19. Coopersmith C, Rebmann T, Zack J, et al. Effect of an education program on decreasing catheter related bloodstream infections in the surgical intensive care unit. Crit Care
Med. 2002;30(1):59-64.
20. Eggiman P, Harbarth S, Constantin M, Touveneau S, Chevrolet J, Pittet D. Impact of a prevention strategy targeted at vascular-access care on incidence of infections acquired in intensive care. Lancet. 2000;355(9218):1864-1868.
21. Eggiman P, Pittet D. Overview of catheter-related infections with special emphasis on prevention based on educational programs. Clin Microbiol Infect. 2002;8(5):295-309.
22. Alexandrou E, Murgo M, Calabria E, et al. Nurse-led central venous catheter insertion- procedural characteristics and outcomes of three intensive care placement services. Int J Nurs Stud.2012;49(2):162-168.
23. Alexandrou E, Spencer T, Frost S, Mifflin N, Davidson P, Hillman K. Central venous catheter placement by advanced practice nurses demonstrate low procedural complication and infection rates--a report from 13 years of service*. Crit Care Med.2014;42(3):536-543.
24. Cotogni P, Barbero C, Garrino C, et al. Peripherally inserted central catheters in non- hospitalized cancer patients: 5-year results of a prospective study. Support Care
Cancer. 2015;23(2):403-409.
25. Galloway M. Insertion and placement of central catheters in the oncology patient. Paper presented at: Seminars in Oncology Nursing2010.
26. Pittiruti M, Emoli A, Porta P. A new area of competence for the vascular access nurse:
the PICC port. J Assoc Vasc Access. 2013;18(4):217-218.
27. Curto-García N, García-Suárez J, Chavarria MC, et al. A team-based multidisciplinary approach to managing peripherally inserted central catheter complications in high-risk haematological patients: a prospective study. Support Care Cancer. 2016;24(1):93-101.
28. Steere L, Ficara C, Davis M, Moureau N. Reaching one peripheral intravenous catheter (PIVC) per patient visit with lean multimodal strategy: the PIV5Rights™ bundle. J Assoc Vasc Access. 2019;24(3):31-43.
29. Flodgren G, Rojas-Reyes MX, Cole N, Foxcroft DR. Effectiveness of organisational infrastructures to promote evidence-based nursing practice. Cochrane Database Syst Rev.2012;2:CD002212.
30. AVATAR. The High Five Campaign: Making Vascular Access Complications History.
2017; accessed 2020 http://www.avatargroup.org.au/the-high-five-campaign.html.