Herd Immunity and COVID-19
By Sue Barnes, RN, CIC, FAPIC
This column originally appeared in the December 2020 issue of Healthcare Hygiene magazine.
When a large percentage of a community is immune to an infectious disease, ongoing transmission of the disease is unlikely. This state is termed herd immunity, and it can be achieved through vaccination (vaccine induced immunity) and through infection with the disease (natural immunity). It is important to note that by reducing viral transmission, herd immunity provides protection to those who cannot be vaccinated such as newborns, and immunocompromised individuals.1
The number of people required to be immune to achieve herd immunity is based on the contagiousness of the disease. Those infectious diseases that spread easily, such as measles, require a higher number of immune individuals in a community to reach herd immunity. COVID-19 is also a very contagious disease. Experts estimate that in the United States, more than 200 million people (70 percent of the population) would have to recover from COVID-19 and develop effective natural immunity in order to achieve herd immunity, thereby halting the epidemic.2
There are a lot of unknowns with COVID-19 which add complications to the goal of achieving herd immunity. Most importantly we do not have a vaccine and may not for some time. Additionally, we do not know if immunity is always conferred by COVID-19 infection, nor which people develop natural immunity after infection, and how long immunity might last. Even once a vaccine is developed, there are variables that will impact its effect on the pandemic. These include how effective the vaccine is, how many vaccine doses will be available for distribution, and how many people are willing to get vaccinated. This last variable is anticipated to be a significant challenge given the number of people who refuse to receive the annual influenza vaccination. And of course, even with a vaccine, until herd immunity is achieved, cases introduced by those traveling from outside of the U.S. will contribute to the ongoing US COVID-19 epidemic.3
Given the lack of a unified national response to the COVID-19 pandemic in the U.S., a wide spectrum of approaches can be seen relative to prevention tactics from state to state. This has also resulted in the highest case and death count globally, and dissent among various experts regarding the best method of achieving herd immunity.4 On the one hand, there is the Great Barrington Declaration. This is a statement written by three public health experts, which supports achieving herd immunity by allowing COVID-19 to spread in the young and healthy population where it is less likely to be deadly. The three experts suggest that the current COVID-19 prevention measures are resulting in greater harms than the pandemic, including economic instability, lower childhood vaccination rates, fewer health screenings, and deteriorating mental health.5
This Declaration was denounced by the John Snow Memorandum, which was published in response and signed by 6,900 scientists and health experts.6 The memorandum recommends that restrictions (not lock down) should be continued, in addition to social and economic programs and vaccine development. These experts explain that the primary concern with permitting spread of COVID-19 is that it would lead to the death of one to two million people, without necessarily speeding up society’s return to business as usual. In addition, if so many people become sick with COVID-19 at one time, hospitals would become quickly overwhelmed.
Many medical professionals use the term “herd protection” instead of herd immunity, because the phenomenon doesn’t actually result in immunity to the virus. Instead it reduces the risk that non-immune people will come into contact with the virus. Applying the concept of herd immunity through community spread of SARS CoV2, would be based on the unproven assumption that anyone who survives an infection will become immune. From studies of the pandemic to date, it does seem that some kind of immunity seems to follow infection, but it is unclear how long and for which people this occurs. And we don’t yet have a definitive method to measure immunity to SARS CoV2 virus.7
In the absence of a national approach to the pandemic, it may be prudent to look to the clinical professionals for guidance (John Snow Memorandum), versus those in public health sector (the Barrington Declaration) if the two are not in alignment. Clinical experts not only have training and experience regarding infectious diseases they are also at the front lines, observing first-hand what is happening with the pandemic. As concluded by the John Snow Memorandum, herd immunity for COVID-19 cannot safely be achieved with natural immunity alone but must be supplemented with vaccine induced immunity once an effective vaccine is widely available. In the meantime, local governments will continue to determine what restrictions on business are needed, supplementing social distancing and mask/face coverings, to contain the pandemic.
References:
1. CDC. https://www.cdc.gov/vaccines/vac-gen/immunity-types.htm Last accessed November 3, 2020.
2. Mayo. https://www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/herd-immunity-and-coronavirus/art-20486808 Accessed Nov, 3, 2020.
3. The Lancet. https://doi.org/10.1016/S0140-6736(20)32153-x Accessed Nov. 3, 2020.
4. Altman D. Understanding the US failure on coronavirus. BMJ 2020; 370:m3417. DOI: https://doi.org/10.1136/bmj.m3417 (Published Sept. 14, 2020).
5. Great Barrington Declaration. https://gbdeclaration.org/ Accessed Nov, 3, 2020.
6. John Snow Memorandum. https://www.johnsnowmemo.com/ Accessed Nov. 3, 2020.
7. Aschwanden C. The false promise of herd immunity for COVID-19. Nature online; Oct. 21, 2020. DOI: https://doi.org/10.1038/d41586-020-02948-4 Accessed Nov. 3, 2020.
COVID-19 Lessons Learned at Nine Months
By Phenelle Segal, RN, CIC, FAPIC
This column originally appeared in the November 2020 issue of Healthcare Hygiene magazine.
November 2020 signifies an unprecedented nine months into the COVID-19 pandemic that took the nation by surprise and resulted in a tragedy on many levels. The intensity and speed with which this virus entered the United States turned healthcare facilities upside down across the continuum of care. Acute care hospitals were unprepared with inadequate supplies of personal protective equipment (PPE), disinfectants and equipment, thereby creating challenges of unprecedented proportions. Hospital beds were filling at alarming rates and several hospitals were turning non-clinical areas into wards or units. Makeshift hospitals were being erected in some cities and staff shortages were extreme.
Long-term care and outpatient facilities including doctor’s offices and clinics were unable to obtain supplies due to demand outweighing supply and this resulted in a state of chaos. Nursing homes and other long-term care settings in many regions were hit very hard with facility outbreaks and many elderly residents died. Lack of preparation was not necessarily the fault of the individual facilities or offices and practices, but rather, akin to the “big earthquake.” Unpredictable until it happens and particularly with such intensity.
Well into the pandemic, due to the diligence of the healthcare industry, Food and Drug Administration (FDA), Environmental Protection Agency (EPA) the Occupational Safety and Health Administration (OSHA) and private organizations as well as supply companies, obstacles have been approached aggressively. Depending on the location of facilities and the number of COVID-19 cases, supplies including personal protective equipment or PPE have become more available, albeit an ongoing shortage of N95 masks for some acute care and non-acute care settings. Many facilities have been able to revert to conventional capacity as per the Centers for Disease Control and Prevention (CDC) guidance developed earlier in the pandemic for optimizing PPE. https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/index.html.
Surge Capacity
A critical component of the ability to respond to large-scale disasters is surge capacity. Surge capacity is defined as “a healthcare system’s ability to expand quickly beyond normal services to meet an increased demand for medical care” or “ the ability to expand care capabilities in response to sudden or more prolonged demand.”
Emergency preparedness and planning in response to the terrorist attack on 9/11 was ramped up and beginning in 2003, The Joint Commission required all acute-care hospitals to develop a written plan based on facility hazard vulnerability assessments. In 2004, The Agency for Healthcare Research and Quality (AHRQ) expanded its Bioterrorism Planning and Response research and focused on ways to expand bed capacity in hospitals and develop surge requirements. In addition, in 2008 the U.S. Department of Health and Human Services (HHS) and the Centers for Disease Control and Prevention (CDC) were included in the emphasis on emergency preparedness and planning, with the Department of Homeland Security funding initiatives.
Effective emergency preparedness in healthcare requires planning for large-scale situations that affect many people. These events include terrorist attacks resulting in multi-casualty trauma, chemical, biological and radioactive events. Infectious disease epidemics and pandemics between 2003 and prior to COVID-19 included severe acute respiratory syndrome (SARS), Middle Eastern Respiratory Syndrome (MERS), H1N1 flu and Ebola virus. Each event includes subtle differences in the type of capacity needed, but general principles apply.
For at least two decades, hospitals have provided a written plan evaluating their hazard risks, resources, and an idea of their general ability to handle a surge including highly transmissible infectious agents. Prior to COVID-19, long-term care facilities (LTCFs) which includes nursing homes, assisted living facilities, and rehabilitation centers were expected to address surge capacity for the purpose of being available either for acute-care patients or for patients who were discharged early from traditional acute-care facilities to make beds available for additional acute care victims needing hospitalization.
Nursing homes had plans in place for some public health emergencies, but many had not done planning specific to pandemics such as COVID-19. Natural disaster plans were available such as those for wildfires and earthquakes. Planning was also depended on facility location and state requirements.
In planning for emergencies, concerns in nursing homes included caring for special patient populations during an emergency. Concerns about staffing in an emergency were seen across the board and staff were reluctant to leave their families. Lack of adequate amounts of medications and medical supplies as well as storage space for such were of concern too. Many nursing homes across the nation were willing to accept residents from area hospitals but concerns regarding the patient acuity levels and subsequent staffing and building capacity issues were of concern.
Key Components of Surge Capacity
The key components of surge capacity are known as “4 S’s” and include Staff, Stuff, Structure and Systems.
Staff
Key personnel include clinical staff such as physicians, nurses, respiratory therapists, pharmacists and technicians. Support staff such as environmental services, physical plant services, security services and clerical workers are indispensable during a pandemic. Intensive care units and emergency departments are two areas that require a tremendous number of staff. Repurposing of staff may be required including retired clinical personnel or those with expired professional licenses.
Staff shortages due to long shifts and physical exhaustion, PPE burnout due to mandatory use, emotional burnout, resignations, inability to work due to childcare or elder care needs and ill personnel with several deaths are expected.
Stuff
Surge capacity stuff includes durable equipment such as ventilators, oxygen masks, oximeters, defibrillators, intravenous (IV) pumps, blood glucose and INR monitors, cardiac monitors, hospital beds and wheelchairs. In addition, patient supplies include medications, IV catheters and fluids, oxygen, syringes, sutures, sterile dressings and PPE. Shortages are expected when a pandemic of epic proportions takes over a nation and unanticipated supplies are needed.
Structure
Hospitals will need to be reconfigured including utilizing rooms that are not typically patient care rooms, converting positive into negative pressure rooms, use of the operating rooms with anesthesia machines for critical patients and rearranging the emergency department. Outpatient clinics could be used as a satellite emergency department. Designating COVID-19 units and COVID-free units is essential. Staff should be dedicated to both. During epic pandemics, these needs will most likely be impossible to fulfill, especially at the beginning of the wave.
Systems
Systems include a clear chain of command for different activities. This chain of command should have a commander available day and night and be a good communicator with an effective communication strategy inside and outside the facility. The ability to share information among staff, the media, patients or residents and families is essential. Systems include written policies, procedures and protocols as well as education of personnel. Systems also include designating personnel to be responsible for “stuff” including PPE and reporting issues to the chain of command.
Summary
COVID-19 challenges during the past nine months have forever changed the focus of emergency planning. Surge capacity and planning for future disasters will require ongoing dedication and determination across the continuum of healthcare. The combination of tremendous teamwork, flexibility, creativity and coping skills inherent in healthcare professionals is evident several months into the disaster and as we prepare for the “winter wave” combined with influenza, facilities including acute, long-term and outpatient care are ready to: face existing and new challenges with strength and determination.
Phenelle Segal, RN, CIC, FAPIC, is president of Infection Control Consulting Services.
References:
1. Surge Capacity: Disaster Medicine. 2006: 193–202. Published online 2009 May15. doi: 10.1016/B978-0-323-03253-7.50035-2
2. Exploring the Concept of Surge Capacity" OJIN: The Online Journal of Issues in Nursing; Vol. 14 No.2. DOI: 10.3912/OJIN.Vol14No02PPT03
3. How to Surge to Face the SARS-CoV-2 Outbreak: Lessons learned from Lombardy, Italy. Disaster Med Public Health Prep 2020 Apr 1: 1-3. doi: 10.1017/dmp.2020.64
Leading the Way to Zero: Integrating What We’ve Learned to Create the “New Normal”
By Sylvia Garcia, MBA, RN, CIC
This column originally appeared in the October 2020 issue of Healthcare Hygiene magazine.
On Sept. 14, 2020, The Institute for Healthcare Improvement’s National Steering Committee for Patient Safety released Safer Together: A National Action Plan to Advance Patient Safety. This plan emphasizes that “…safety requires a shift from reactive, piecemeal interventions to a proactive strategy in which risks are anticipated and system-wide safety processes are established and applied…”
Anticipating risks and implementing safety processes are an infection preventionist’s “bread and butter.” We are trained to systematically apply models to explain and prevent transmission of infections within our organizations. The chain of infection is one model and another is the Hierarchy of Controls. The chain of infection identifies the route of transmission as the weakest link in the chain. If we can break that link, we can prevent transmission. n the Hierarchy of Controls, the most effective methods are at the top: elimination and substitution, and the least effective methods are at the bottom: administrative controls and personal protective equipment. Using what was known about COVID-19 transmission, initial reaction to COVID-19 focused on an integrated response to prevent transmission of COVID-19 which strived to:
• Eliminate the hazard and conserve resources by stopping elective procedures and limiting or barring visitors
• Substitute processes such as telehealth to provide care
• Install engineering control such as physical barriers at reception points
• Implement administrative controls such as screening everyone entering the facility for symptoms
• Provide personal protective equipment (PPE) to our frontline workers.
As cases increased around the world and transmission from asymptomatic cases was identified, organizations adjusted their approaches. Many people started to wear face masks and respirators out in public and in healthcare settings causing confusion and controversy. With dire PPE shortages in some parts of the United States, public officials emphasized that medical face masks and respirators should be reserved as PPE for those providing care to patients. In an effort to conserve scarce resources, some organizations restricted use of medical and surgical masks and respirators to those providing direct care to patients with known or suspected COVID-19.
Face coverings (masks made of cloth) were suggested as an alternative that would conserve resources for frontline workers. Initial information indicated that face coverings would not protect the wearer but could protect others. Now, increasing evidence concludes that universal masking and use of face coverings can protect the wearer and others from COVID-19.
The effect of COVID-19 prevention methods on influenza in the southern hemisphere countries offers hope for a controlled influenza season. Data on influenza from Australia, Chile, and South Africa shows very low influenza activity during June thru August 2020, the months that reflect typical Southern Hemisphere influenza season. Summer circulation of influenza in the United States is at a historical low.
There is no “magic bullet” that, by itself, will prevent transmission of respiratory viruses, including COVID-19 and influenza. Historically, we have focused on respiratory etiquette - encouraging patients to cover their cough and when possible wear a mask if they have respiratory symptoms. Despite improving influenza vaccination rates and implementation of respiratory etiquette, health care organizations have continued to identify health care associated transmission to patients and staff. As we move into the “new normal” of COVID-19 and face the start of influenza season, we need to use information we have learned from our experiences with COVID-19 to protect our patients, visitors, and staff. The CDC estimates that 3 to 8 percent of the U.S. population contracts influenza each year. Like COVID-19, influenza is transmissible before symptoms develop.
With information evolving on the role of microdroplets and ventilation, specifically air exchanges, in transmission of COVID-19, health care organizations need to plan for the coming winter. Rigorous implementation of COVID-19 prevention strategies including universal masking, social distancing, hand hygiene and surface disinfection can control COVID-19. When paired with influenza vaccination, these strategies may also lead to an influenza season with low transmission and provide information that could lead to new proactive strategies to prevent transmission respiratory viruses.
Infection preventionists must be able to integrate evolving information to make convincing recommendations for prevention to their leadership teams. Although work on the National Action Plan began before COVID-19, its release is timely as the core principles and recommendations are extremely relevant to the pandemic. Ultimately, the decision on which prevention strategies to implement and when they should be implemented is in the collective hands of health care organizational leaders. Even with state mandates, health care organizations can choose to rigorously educate and enforce implementation, or they can, instead, put up signs and call it a day. Ideally, it is the hope of infection preventionists, like me, that healthcare organizations will lead the way to zero harm by using the valuable information we are learning during this pandemic.
Sylvia Garcia, MBA, RN, CIC, is director of infection prevention and control within the of Division of Healthcare Improvement at the Joint Commission.
References:
1. National Steering Committee for Patient Safety. Safer Together: A National Action Plan to Advance Patient Safety. Boston, Massachusetts: Institute for Healthcare Improvement; 2020. Available at: www.ihi.org/SafetyActionPlan
2. Centers for Disease Control and Prevention. Principles of Epidemiology in Public Health Practice, Third Edition. Available at https://www.cdc.gov/csels/dsepd/ss1978/index.html Accessed September 29, 2020.
3. Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health. Workplace Safety and Health Topics. Hierarchy of Controls. Available at https://www.cdc.gov/niosh/topics/hierarchy/default.html Accessed September 28, 2020
4. Occupational Safety and Health. Recommended Practices for Safety and Health Programs. Hazard Prevention and Control. Available at https://www.osha.gov/shpguidelines/hazard-prevention.html Accessed September 28, 2020.
5. Wang X, Ferro EG, Zhou G, Hashimoto D, Bhatt DL. Association between universal masking in a health care system and SARS-CoV-2 positivity among health care workers. JAMA. Published online July 14, 2020. doi:10.1001/jama.2020.12897
6. Hendrix MJ, Walde C, Findley K, Trotman R. Absence of Apparent Transmission of SARS-CoV-2 from Two Stylists After Exposure at a Hair Salon with a Universal Face Covering Policy - Springfield, Missouri, May 2020. MMWR Morb Mortal Wkly Rep 2020;69:930-932. DOI:http://dx.doi.org/10.15585/mmwr.mm6928e2external icon
7. Olsen SJ, Azziz-Baumgartner E, Budd AP, et al. Decreased Influenza Activity During the COVID-19 Pandemic — United States, Australia, Chile, and South Africa, 2020. MMWR Morb Mortal Wkly Rep 2020;69:1305–1309. DOI: http://dx.doi.org/10.15585/mmwr.mm6937a6
8. Centers for Disease Control and Prevention. Key Facts About Influenza (Flu) Available at https://www.cdc.gov/flu/about/keyfacts.htm Accessed on September 29, 2020.9. Centers for Disease Control and Prevention. How Flu Spreads. Available at https://www.cdc.gov/flu/about/disease/spread.htm#:~:text=When%20Flu%20Spreads,7%20days%20after%20becoming%20sick. Accessed September 29, 2020.
Beyond Bundles: Resources to Support IP Departments During the Pandemic
By Sue Barnes, RN, CIC, FAPIC
This column originally appeared in the September 2020 issue of Healthcare Hygiene magazine.
During the current COVID-19 pandemic, infection prevention department (IPD) resources have been dramatically impacted by efforts required for containment of the virus. There is, consequently, less focus on prevention of healthcare-associated infections (HAIs). This diversion of focus is creating risk for patients according to clinicians at the Virginia Commonwealth University Health System. Their Twitter survey in April revealed that the majority of more than 200 respondents reported that the pandemic was consuming 75 percent of IPD time and resources.1
The report from the authors of a recent clinical paper makes similar observations, based on the experience of several of the hospitals in New York and Missouri.2 They suggest that the COVID-19 pandemic will significantly impact the rate of central line-associated bloodstream infections (CLABSIs), which have been observed to increase more than 300 percent in two hospitals over the past 15 months. The authors theorize that this may be due to smaller denominators as a result of fewer elective procedures, decreases in hospital census, as well as an increase in high-risk patients. In addition, proning critically ill COVID-19 patients could potentially cause disruption of central-line dressings.2 Also adding to the risk in some locations, intravenous (IV) tubing is being extended so that IV pumps can be kept outside of patient rooms. This creates the potential risk of contamination of tubing when in contact with floors.3
This is truly concerning, given that even prior to the pandemic, zero preventable HAI had not been achieved and/or sustained in many U.S. healthcare facilities.4 In most hospitals, a bundle of standard measures (i.e., supported by category 1 level evidence, defined as at least one properly designed randomized controlled trial) is the first line approach for prevention of all categories of HAI. When zero preventable infections are not achieved with a bundle of standard measures, one or more plus measures are often added (defined as supported by less than category 1 level evidence such as cohort or case control studies and expert opinion). For example, a standard bundle measure for prevention of surgical site infections (SSIs) is controlling serum glucose. An example of a plus measure for prevention of SSIs is pre-operative nasal decolonization. The number and type of plus measures is dynamic and always changing as studies are completed on emerging technologies and evidence is made available. Keeping pace with this dynamic body of knowledge is time-consuming. Consequently, in one large multi-hospital system, the national infection prevention program leader developed a Beyond Bundles Plus Measures HAI Prevention Toolkit to help the organization’s infection prevention staff keep pace with the constantly evolving infection prevention measures (products and practices) and associated evidence of efficacy.
Beyond Bundles Plus Measures HAI Prevention Toolkit
This 48-page document includes evidence summaries for all products and practices included, and is updated every two years. It is organized in chapters by infection type as follows: CAUTI (catheter associated urinary tract infection), CDI (Clostridium difficile infection), CRBSI (catheter related bloodstream infection which includes prevention of both CLABSI and peripheral bloodstream infections), HAP (non-ventilator associated hospital acquired pneumonia), MDRO (multi-drug resistant organism infections), VAP (ventilator associated pneumonia) and SSI. Each chapter begins with a list of standard bundle measures. Following the standard measures in each chapter, a table lists the plus measures designed to prevent that particular type of HAI. The plus measures are identified during deep review of clinical journals, attendance of professional conferences, continuing education courses, and networking with clinical experts and industry partners by the author. The collection is not intended to be exhaustive, as it is limited by the author’s due diligence in the collection and review of this clinical information. Vendors have been invited to share evidence, and product names are included when evidence of efficacy has been made available. So, although the toolkit includes product names, it does not seek to promote any product or company.
Following each plus measure there is an embedded document containing an evidence summary, which is also updated every two years. Product order information is provided in the form of links and text, as well as tools supporting implementation of the product or practice, such as video clips and embedded checklists and guidelines. The toolkit is available for download in full, and also by individual chapter, in open-access format and has been publicized widely including via social media. https://www.zeroinfections.org/toolkits.html
Especially today, when faced with the COVID-19 pandemic, infection preventionists are challenged with competing priorities. This open-access toolkit, offers a no cost aid for IP departments which supports the resource intensive task of reviewing the emerging evidence of efficacy associated with plus infection prevention measures. Unless zero preventable infections have been achieved with standard bundle measures, this is an essential task in optimizing infection prevention programs.
References:
1. Stevens M, Doll M, Pryor R, Godbout E, Cooper K and Bearman G. Impact of COVID-19 on traditional healthcare-associated infection prevention efforts. Infect Control Hosp Epidemiol. 41(8), 946-947. 2020. doi:10.1017/ice.2020.141
2. McMullen KM, Smith BA, Rebmann T. Impact of SARS-CoV-2 on hospital-acquired infection rates in the United States: Predictions and early results. July 2, 2020. Am J Infect Control. 2020; S0196-6553(20)30634-9. doi:10.1016/j.ajic.2020.06.209
3. Institute for Safe Medication Practices: https://ismp.org/resources/clinical-experiences-keeping-infusion-pumps-outside-room-covid-19-patients
4. CDC HAI Progress Report: https://www.cdc.gov/hai/data/portal/progress-report.html
Navigating COVID-19’s Ongoing Challenges: A Perspective From the Front Lines of Infection Prevention
By Phenelle Segal RN, CIC, FAPIC
This column originally appeared in the August 2020 issue of Healthcare Hygiene magazine.
In a pre-COVID 19 world, August is the height of summer vacation for millions of Americans. People enjoy backyard barbecues, swimming parties, fun at the beach, traveling and organizing family reunions as the nation enjoys a much-needed reprieve from cold temperatures and long work hours. The summer of 2020 is very different as it continues to reveal a tumultuous and unprecedented pandemic. COVID-19 continues to follow the trajectory of an out of control respiratory-spread virus, that has the power to sicken and kill many Americans within a short period of time. Besides the tragic toll on human lives, COVID-19 continues to affect the economy and threatens healthcare facilities and workers with no end in sight. The ongoing challenges we face is evident including severe shortages of personal protective equipment (PPE) and disinfectant products among many others.
Ongoing Challenges in Healthcare Facilities
Over the course of five months, infection preventionists -- after planning and preparing as best as possible -- were unaware of the impact an out-of-control, highly transmissible respiratory virus could have on a system-wide basis. Prior pandemics including SARS, H1N1, MERS and Ebola revealed the need to stay on top of surge capacity plans in the event of a “COVID-19 catastrophe. However, in line with other natural disasters, we had no idea when it would strike, what type of disease would attack and how much of an impact it would have. We were always aware that our efforts to plan for the “big one,” may fall short of the needs as the unknown would deliver its punches. Decades of developing, implementing, and educating on “best practices” have abruptly halted as infection preventionists and healthcare educators scramble to prioritize and use best judgment, while guiding facilities across the continuum of care. The frustration in having to let go of routine practices is daunting, but infection preventionists must be flexible in an ever-changing environment. This article will address two ongoing critical challenges as we continue striving in a nontraditional fashion to strive for staff and patient safety.
Personal Protective Equipment (PPE) Shortage
Filtering face-piece respirators (FFRs) including but not limited to N95 respirator masks are critical items in the prevention of COVID-19 spread and other aerosol transmissible diseases. They remain in ongoing short supply throughout the nation. FFRs protect the user by filtering particles out of the air that is being breathed by the users. The National Institute for Occupational Safety and Health (NIOSH) the federal agency responsible for conducting research and making recommendations for the prevention of work-related injury and illness has seven classes of FFRs approved with a ninety-five percent minimum level of filtration (95 percent). Masks that filter less than 95 percent of particles are not guaranteed to be as effective as those that filter 95 percent or more. NIOSH works in conjunction with the Occupational Health and Safety (OSHA) agency that regulates respiratory programs for healthcare workers.
N95 masks are the traditional FFR used in hospitals for healthcare personnel taking care of patients requiring airborne isolation. The most common use has been for patients with aerosol transmissible diseases including pulmonary tuberculosis (TB). They are manufactured and sold as “single use only” and until COVID-19, there was no shortage of these items.
In response to the increased demand for use as thousands of cases were occurring in the hot zones in March and April, the Food and Drug Administration (FDA) released Emergency Use Authorizations (EUAs) for companies that had developed a “mask reprocessing” system to decontaminate N95s for reuse. Only N95 masks can be decontaminated but is dependent on the manufacturer and products used. Some N95 masks are not compatible with reprocessing such as those made with cellulose. In addition, the Centers for Disease Control and Prevention (CDC) issued guidance for reuse and extended use of single use FFRs. To date, facilities are reprocessing N95 masks via authorized methods and strictly follow the manufacturer of the mask as well as the decontamination equipment’s instructions for use. These methods are primarily using hydrogen peroxide in various forms, but with limited numbers of reprocessing cycles (based on the type of equipment) before having to discard them.
Infection preventionists continue to work with facilities that cannot reprocess masks and one of the CDC recommendations for extending the “life of the mask” is to place them in a brown paper bag or other breathable container for at least 72 hours before wearing them again. Facilities are providing a limited number of N95 masks to employees at most risk. That includes healthcare workers caring directly for COVID-19 positive and those providing aerosol generating procedures (AGPs) such as anesthesiology personnel. Staff are wearing surgical masks over their N95 masks to prevent them from becoming decontaminated. Face shields are thought to provide some protection from becoming contaminated too. Reuse and disinfection techniques are neither simple, nor ideal, but at this juncture, the choices are limited. It is important to note that masks must be discarded if they are visibly soiled, damaged or become moist/wet as they will not function effectively.
OSHA (29 CFR 1910.134) requires a medical evaluation, fit-testing and training prior to use of N95 masks performed initially (before the employee is required to wear the N95) followed by annual fit testing prior to COVID-19. However, OSHA did provide Temporary Enforcement Guidance in response to COVID-19 and despite the temporary guidance, challenges with lack of availability of appropriate sizes for staff members and short supply of solution for the fit test kits continues. A self-administered seal check should be performed before donning the masks.
Additional FFRs have been authorized by NIOSH for use including but not limited to “Surgical N95 respirators” and Powered Air Purifying Respirators (PAPRs). PAPRs do not have to be fit tested. Lastly, hospitals have turned to reusable elastomeric non-powered air-purifying half facepiece (half mask) manufactured to be reused, which has distinct advantages. They also need a fit test prior to first use.
Disinfectant Product Shortage
Coronaviruses are enveloped viruses and hence are extremely easy to kill using the appropriate disinfectant. Novel coronaviruses are unable to achieve a viral claim in a short amount of time and usually companies take a year or more to complete testing. Due to the length of time it takes to achieve this claim, the U.S. developed a policy based on a hierarchy for companies, meaning that if a product is effective against “harder to kill viruses, it is likely to kill COVID-19”. Harder to kill viruses include the non-enveloped group including norovirus, poliovirus, rhinorvirus, feline and reovirus.
Shortly after the pandemic was recognized as a potential threat as well as the emphasis placed on the size of COVID-19 droplets and the ability to settle on surfaces, disinfectant products became difficult to obtain as the demand outweighed the supply. This included online and in-store purchases as well as manufacturers and distributors running out of product. In response to the importance of surface disinfection and product shortages, the Environmental Protection Agency (EPA) developed an extensive list of products shortly after COVID-19 was exponentially spreading. Known as the EPA’s “List N: Disinfectants for Use Against SARS-CoV-2 (COVID-19), it is constantly updated, and new products are being added. Facilities are encouraged to check the list regularly. https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2-covid-19
Hospitals continue to face shortages of disinfectant wipes and liquid with no immediate “return to normal” for availability of supplies. Manufacturers are developing creative strategies to provide product to healthcare facilities as a priority. The public has very limited access to supplies on shelves, with a one per person limit in most stores. Online purchase of products are prioritized for healthcare facilities only and the public does not have access to them.
Extreme shortages are occurring in non-acute care-based healthcare facilities at a higher rate than acute care hospitals. The primary reason in the non-hospital- based facilities is due to the product manufacturers prioritizing distribution based on previous use. Acute care hospitals use disinfectants on a much larger scale than non-acute based facilities. Manufacturers are reviewing order history together with supply when determining which facilities receive products and the quantity allocated.
Five months into the pandemic, with record numbers of cases appearing in many states and no end in sight, infection prevention challenges will continue to arise. It is incumbent upon us as healthcare providers, to face these hard times with strength, skill and perseverance as we continue to work at providing the support, strength and structure to our colleagues and patients.
Phenelle Segal, RN, CIC, FAPIC, is president of Infection Control Consulting Services.
Under-Addressed Risk Factors for COVID-19 and Future Pandemics
By Sue Barnes, RN, CIC, FAPIC
This column originally appeared in the July 2020 issue of Healthcare Hygiene magazine.
We have learned much about critical risks factors that lead to global transmission of novel respiratory viruses, including the current COVID-19 pandemic as well as those in the past. This must in turn, inform our preparedness for future pandemics. The risk factors include a lack of herd immunity for novel viruses, inadequate/untimely transnational communication and collaboration when novel virus is first identified, inadequate stores of personal protective equipment, viral qualities such contagiousness and modes of transmission (e.g., coughing, sneezing, face touching, and contact with contaminated surfaces). Especially during the current pandemic, there is tremendous focus placed on mitigation strategies for each of these risk factors. However, there are two additional risk factors which have received less attention during the current and past pandemics. These are: 1) the infection transmission risk posed by pre-school and school-aged children and 2) the risk posed by Asian mixed wild animal wet markets, both in introducing novel viruses as well as transmitting them.
The Role of Pre-School and School-Aged Children
Young children often play a significant role in transmission of respiratory viruses including pandemic influenza (flu) and the current novel coronavirus SARS CoV2 which causes COVID-19 infections.1 Given that respiratory viruses are found in the nose and throat, and children frequently touch their noses, eyes and mouths, share objects that have been put in their mouths, and have physical contact during play, these viruses are easily transmitted among children and with parents, teachers and caregivers. Transmission then continues with contacts of the parents, teachers and caregivers. Exacerbating the current pandemic is the lack of immunity to this novel virus in both adults and children. And even with seasonal flu, young children may not have pre-existing herd immunity.2
Containing the transmission of pandemic flu and other respiratory viruses including SARS CoV2, posed by young children within our global population, will require ongoing education of children, parents and caregivers. The education must include information and training regarding hand hygiene, face coverings, environmental disinfection and physical distancing. It must also include sufficient sourcing of supplies (e.g. masks/face coverings, hand sanitizer, environmental disinfectant) to ensure that these are ubiquitous. Adequate annual influenza vaccination of all three groups, children, parents, and teachers will continue to be critical, in addition to SARS CoV2/COVID-19 vaccination when it becomes available. Nasal antiseptics as part of daily hygiene for children, teachers and caregivers would be arguably an added advantage providing an extra layer of safety. This type of product has been used successfully in healthcare to reduce infections by bacteria residing in the nose.3 Studies are needed to determine if nasal antiseptics can similarly reduce the risk of respiratory viral infections as well, but it is a good bet since respiratory virus is more easily inactivated than bacteria.4 Temperature screening, mask wearing for middle school, and physical distancing strategies, such as smaller class sizes, with rotation of students between in person classrooms and distance learning strategies may also be important in reducing the contribution of respiratory viral transmission by young children.5 Read more here:6 https://www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/schools.html
The Role of Live Animal Wet Markets in Asia
Asian wet markets where live animals are sold have been proposed or confirmed as the source of a number of pandemics including Asian Flu 1957, Hong Kong Flu 1968, SARS CoV1 2003 and SARS CoV2 2019.7 These markets create a perfect environment for the introduction and transmission of novel viral pathogens, where wild animals of many types from all over the world are brought into close contact which would never happen in the natural world.
The animals in the market are packed together for days and sometimes longer and are often slaughtered in the market where blood and body fluids are generated, and many humans are gathered. This is where viral pathogens can be transmitted between species and then to humans. This is especially true mainland China where the markets have many kinds of animals – some wild, some domesticated and not always native. These animals are stressed in crowded captivity among humans resulting in reducing their natural immunity and facilitating viral transmission, and with genetic mixing, novel viral strains. There are many types of wet markets in Asia, only the type described posing the greatest risk. There also many challenges to reducing or eliminating them including culture and tradition.8 Read more at: https://www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/schools.html
The elimination of all wet markets would not be a practical or reasonable approach, which would be like prohibiting all farmers markets in the U.S. However, reducing or eliminating live animal wet markets in mainland China should be considered, given the morbidity and mortality resulting from the pandemics which continue to be generated from such markets.9-11
Sue Barnes, RN, CIC, FAPIC is an independent clinical consultant, Board certified in Infection Control and Prevention, a Fellow of APIC (FAPIC) and co-founder of the National Corporate IP Director Network. She currently provides marketing and clinical consultation to select industry partners who seek to support infection prevention with innovative products.
References:
1. Mimura S, Kamigaki T, Takahashi Y, Umenai T, Kudou M, Oshitani H. Role of Preschool and Primary School Children in Epidemics of Influenza A in a Local Community in Japan during Two Consecutive Seasons with A(H3N2) as a Predominant Subtype. PLoS One. 2015;10(5):e0125642. Published 2015 May 5. doi:10.1371/journal.pone.0125642
2. Miller E, Hoschler K, Hardelid P, Stanford E, Andrews N, Zambon M. Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study. Lancet. 2010 Mar 27; 375(9720):1100-8. doi:10.1016/S0140-6736(09)62126-7.
3. Mullen A et al. Perioperative participation of orthopedic patients and surgical staff in a nasal decolonization intervention to reduce Staphylococcus spp surgical site infections. American Journal of Infection Control. 45 (2017) 554-6.
4. Osborne K. Viruses, bacteria and fungi. Virox animal health online. October 31, 2017. https://www.viroxanimalhealth.com/blog/viruses-and-bacteria-and-fungi-oh-mydont-let-vicious-viruses-beastly-bacteria-or-freaky-fungi-haunt-you accessed June 13, 2020.
5. United Nations Educational, Scientific and Cultural Organization (UNESCO) https://en.unesco.org/news/back-school-preparing-and-managing-reopening-schools accessed June 13, 2020.
6. CDC Considerations for Schools https://www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/schools.html accessed June 13, 2020.
7. Webster RG. Wet markets--a continuing source of severe acute respiratory syndrome and influenza? Lancet. 2004;363(9404):234‐236. doi:10.1016/S0140-6736(03)15329-9.
8. Woo PC, Lau SK, Yuen KY. Infectious diseases emerging from Chinese wet-markets: zoonotic origins of severe respiratory viral infections. Curr Opin Infect Dis. 2006;19(5):401‐407. doi:10.1097/01.qco.0000244043.08264.fc.
9. Beaubien J. Why They're Called 'Wet Markets' — And What Health Risks They Might Pose. January 31, 2020. NPR online https://www.npr.org/sections/goatsandsoda/2020/01/31/800975655/why-theyre-called-wet-markets-and-what-health-risks-they-might-pose accessed June 13, 2020.
10. Kawaoka Y, Krauss S, Webster RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol. 1989 Nov; 63(11):4603-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC251093/ accessed June 13, 2020.
Infection Prevention Guidance for the Hotel Industry During COVID-19
By Carol McLay, DrPH, MPH, RN, CIC, FAPIC
This column originally appeared in the June 2020 issue of Healthcare Hygiene magazine.
The current COVID-19 outbreak is placing unique psychological stress points on the nation’s healthcare workers (HCWs). Previous research has shown that epidemics can cause severe psychological effects. A recent review of the mental health problems faced by HCWs during this pandemic suggests that HCWs are experiencing considerable stress, anxiety, depression and insomnia.1
Reasons for these adverse psychological outcomes range from excessive workload and work hours, making difficult decisions about how to conserve limited personal protective equipment (PPE) and prioritize treatment, anxiety over putting their families at risk for exposure to the virus, and confronting a mounting death rate.
With their extended work hours and close contact with COVID-19 patients, health care workers have expressed anxiety about safe accommodations. Some workers have long commutes and need a place close by to rest and regenerate. Many worry that they may expose their families to the virus when they return home.
Temporary housing options help to support the mental health needs of staff. Healthcare facilities are creating partnerships with local hotels, universities and rental properties to offer accommodation to healthcare workers.
Hotel rooms for healthcare workers are provided at no-cost through the Rooms for Responders program offered by Marriott Bonvoy, in collaboration with American Express and JPMorgan Chase.2 Hilton and American Express are donating up to 1 million hotel rooms to individual front-line medical professionals during the COVID-19 crisis.3
The American Hotel & Lodging Association (AHLA) has developed the “Hospitality for Hope Initiative” to enhance collaboration between the hotel industry and the health care community, first responders, and local communities.4 As part of the initiative, AHLA is working closely with the Department of Health and Human Services (HHS) to create a national database of hotel properties willing to provide temporary housing for emergency and healthcare workers. At the time of writing, more than 17,000 properties have agreed to participate, offering 2.3 million rooms to our healthcare heroes.
In preparation for hosting HCWs, hotel managers and staff should take precautions to improve guest and employee health and safety.
General guidelines include:
- Follow local/state public health recommendations
- Reinforce personal hygiene throughout your hotel
- Place signage and floor markers in lobby, elevator landings, restaurant areas and other communal areas displaying appropriate physical distancing and health and hygiene reminders.
- Provide hygiene materials such as hand sanitizer in strategic locations such as entrances, elevator landings, fitness centers, restaurants, ice and vending machines.
- Utilize disinfectants that are effective against SARS-CoV-2, the virus that causes COVID-19. (See the EPA’s List N: Disinfectants for Use Against SARS-CoV-2 for a list of approved disinfectants, at:https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2)
- Post a list of precautions that your property will be taking to ensure that both guests and employees will remain safe during this period.
- Consider housing HCWs on a separate wing or section of the hotel reserved for this workforce
Specific Guidelines for Procedural Implementation
Employees
• Consider requiring employees to wear a mask in public areas at all times.
• Consider screening all employees upon arrival to work. Screening questions include:
1. Do you have any flu-like symptoms such as fever, cough or shortness of breath?
2. Have you been around anyone that is positive for COVID-19?
If an employee answers yes to any of the above, have them return home and call their healthcare provider.
• Employees must sanitize hands upon entry of hotel and frequently during their shift.
• Provide employee education about COVID-19 fundamentals such as signs and symptoms, mode of transmission, and prevention strategies to reduce spread including importance of hand hygiene.
• Ensure communications are culturally and linguistically appropriate.
• Train staff to use disinfectants safely and correctly. Staff should wear gloves when cleaning. Follow the manufacturer’s recommendations for proper use of disinfectants; for example, if the product has a 30-second contact time, this means that surfaces must stay wet for 30 seconds to be effective.
• Clearly communicate leave policies for planned and unplanned absences; provide guidance and support for childcare and elder care.
• Implement policies to reduce the frequency and type of face-to-face contact among employees (e.g., hand shaking, shared work areas, break room); ensure employees maintain 6 feet of distance between other employees and guests.
• Closely monitor employee health. Reinforce personal hygiene and cough etiquette.
• Provide hand sanitizer stations and tissues to all employees and guests.
Guests
• Consider requiring all guests to wear a mask in public areas at all times.
• Encourage guests to sanitize hands on entry to hotel.
Beverage service
• No self-service, front desk staff to provide coffee/tea service upon request.
Guest rooms
• Request that all guests exit room while room is being cleaned.
• Thoroughly clean and disinfect all hard surfaces, pay particular attention to high touch surfaces (see section below on specific touch surfaces).
• Do not reuse cleaning clothes between rooms, use disposable cloths/wipes if possible
• Remove bed scarves from service.
• Wash bedspreads/comforters between each guest.
• Remove minibar snacks and beverages from guest rooms, have available upon request.
Public restrooms
• Clean and disinfect public restrooms on a frequent basis.
• Use disposable wipes if possible.
Business center
• Restrict access to ensure social distancing.
• Disinfect after each use, including wiping of keyboard and other high touch surfaces.
Fitness facility
• Follow local guidance and adhere to strict physical distancing and sanitation protocols.
• Ensure guests have access to disinfection wipes.
• Frequent disinfection.
Public laundry facility
• Restrict access to one guest/family at a time.
• Disinfect laundry room after each use.
Laundry
• Linen may become contaminated with the virus. Employees should handle contaminated linen as little as possible with minimal agitation.
• Wash items in accordance with the manufacturer’s instructions using the hottest appropriate water setting; dry items completely.
• Ensure disinfectant is added to laundry wash.
• Clean and disinfect hampers or other carts for transporting laundry.
Dining room
• Follow local/state/federal regulations.
• Provide Grab and Go or pre-wrapped options.
• No self-service food/beverage stations.
• Update floor plans to allow for table configurations no less than 6 feet in proximity to other tables.
Specific Touch Points
Lobby and common areas
• Check-in desk
• Door handles, push plates, hand railings
• Countertops
• Telephone and keypad
• Tables and chairs
• Trash receptacle touch points
• Elevator buttons
Public restrooms
• Door handles
• Sink faucets and toilet handles
• Soap dispenser handle
• Towel dispenser
• Baby changing station
• Trash receptacle touch points
Guest rooms
• Door handles
• Desk, tables, chair, lamps
• Dresser drawer handle
• Drapery pull handles
• Mini-bar, menu, coffee maker
• Light switches and thermometers
• Telephone and keypad, remote control, and alarm clock
• Television
• Make up mirror, hand dryer
• Trash receptacle touch points
• Handles to clothes cupboard, hangers, luggage rack
Ice/vending machines
• Frequent disinfection of door handles, keypads, buttons
It is critical to ensure the health and safety of this essential workforce and the hotel industry is uniquely positioned to support our HCWs who are on the frontlines of this public health crisis. Providing a safe, clean and comfortable hotel room to our exhausted workers after another grueling shift provides much needed physical and psychological support and safety. In addition, this provides hotels a means to keep their doors open and give back during this time of crisis.
By supporting and addressing the social needs of the healthcare workforce, hospitals continue to show their commitment and dedication to keeping Americans safe and healthy.
Carol McLay, DrPH, MPH, RN, CIC, FAPIC, is the CEO of Infection Control International and is a consultant in the fields of healthcare epidemiology, infection prevention and control, and public health.
References:
1. Spoorthy M.S, Pratapa SK and Mahant, S. (2020). Mental health problems faced by healthcare workers due to the COVID-19 pandemic-A review. Asian Journal of Psychiatry. 51, 102119. Advance online publication: https://doi.org/10.1016/j.ajp.2020.102119
2. Rooms for Responders. Available at: https://marriottcares.marriott.com
3. Hilton and American Express Program. Available at: https://newsroom.hilton.com/corporate/news/hilton-american-express-team-up-to-donate-rooms
4. Hospitality for Hope. Available at: https://www.ahla.com/ahlas-hospitality-hope-initiative
COVID-19: The Journey From Mitigation to the ‘New Normal’
By Phenelle Segal, RN, CIC, FAPIC
This column originally appeared in the May 2020 issue of Healthcare Hygiene magazine.
In early January, clinicians in the United States were alerted to cases of a respiratory illness occurring since late December 2019 in dozens of patients from Wuhan, China. Clinicians were told to closely evaluate patients with symptoms and a history of recent travel to and from the affected area. On Jan. 21, 2020 the Centers for Disease Control and Prevention (CDC) officially confirmed the first case of a novel coronavirus in the state of Washington; the patient had returned from Wuhan on Jan. 15 and presented to a medical facility there. Due to his history of travel and respiratory symptoms, a new coronavirus illness was suspected, and a Real time Reverse Transcription-Polymerase Chain Reaction (rRT-PCR) test was run and confirmed the medical center’s suspicion. Within a month from first hearing about the initial cases, the world began experiencing the unprecedent 2019 Novel Coronavirus (2019-nCoV) pandemic.
When first identified in Wuhan, the virus was thought to spread from animal to humans, with no evidence that it was spreading from human to human. Like previous coronavirus organisms, COVID-19 appeared to originate in a poultry and seafood market during the latter part of 2019. The source was unclear with bats and pangolins highly suspected. Upon reaching the U.S., it was becoming more evident that person-to-person spread was a concern in China, but its rate and ability to spread remained unclear.
Healthcare facilities, particularly acute-care hospitals were overrun by sick patients, many of them requiring intensive care treatment with or without the use of a ventilator. Very ill patients have had a prolonged clinical course and delayed discharge due to an unprecedented list of clinical conditions. The huge influx of patients resulted in a tremendous shortage of personal protective equipment (PPE) and ventilators. The shortages were dependent on the region and directly proportional to the number of cases. After several weeks of frenzied care provided to hundreds of thousands of ill patients, many healthcare workers were and continue to be stricken with COVID-19 and several deaths have occurred.
Initial Mitigation Steps
Since CDC first heard of a surge in cases in Wuhan, the agency began preparing as best as possible, aware of the fact that it was a matter of time before the U.S. would see an influx. In conjunction with the White House, the following steps were taken and several remain in place to date:
• Developed an alert system for healthcare providers from the beginning of January.
• Provided guidance to clinicians about signs and symptoms as they were identified from Wuhan, and requesting they be alert for a positive travel history to and from potentially infected countries.
• Provided viral testing guidance.
• Provided preliminarily guidance for the care of patients in the home who may develop COVID-19.
• Provided guidance for airport screening of passengers coming into several major international airports.
• Assisted with developing a diagnostic test to detect this virus in clinical specimens.
• Activated its Emergency Operations Center to prepare for future support to healthcare providers.
• Deployed a team to Washington state to begin contract tracing and other support.
• Ordered each state to issue executive orders to shut down non-essential businesses, public gatherings, sports events, entertainment and stay at home orders.
• Ordered outpatient healthcare providers to cease providing non-urgent/non-emergent services including elective surgeries.
• Implemented social distancing strategies to curb the spread from close contact.
• Banned hospitals and nursing homes from visitors.
• Issued guidance for healthcare facility employees, vendors and essential persons to universally mask while in the building.
• Suggested individual states and counties implement face coverings for the general public.
Ongoing Mitigation
• Guidance was and continues to be released at an accelerated rate for the community and healthcare industry.
• Ongoing updates from many sources were and continue to be very helpful in developing plans for healthcare facilities.
• CDC deployed additional personnel to “hot zones”.
• Conference calls for healthcare providers and community were set up and continue to take place.
• Guidance provided for agencies and companies developing additional tests including antibody tests.
• Guidance for companies and agencies reviewing and trialing medications to treat ill patients.
• Providing input for agencies and companies researching vaccine development.
Returning to the New Normal
Three months into the pandemic, the White House has introduced guidelines to reopen the country using a three-phased approach. Besides other industries, the first and second phase includes resuming outpatient and inpatient elective surgery respectively. Visitor bans will continue to be strictly upheld during phase one and for the most part phase two for hospitals and nursing homes. Every state will need to develop “reopening plans,” which is expected to be extremely challenging and will require a multi-disciplinary team approach.
Outpatient surgery centers are closed to elective procedures with urgent or emergent procedures allowed at the discretion of the medical providers. Elective procedures are on hold in hospitals too. During the ban of elective procedures, staff were responsible for developing initial plans for screening patients and physical distancing protocols. In addition, outpatient centers were asked to develop plans for possible conversion to COVID-19 bed use and anesthesia machines for the purpose of ventilating patients. PPE was to be preserved and in certain regions, sent to hospitals for front line staff to use during care of infected patients.
Roadmap for Resuming Elective Surgery After COVID-19 Pandemic
In late April, a joint statement was released by the American College of Surgeons, American Society of Anesthesiologists, Association of periOperative Registered Nurses and the American Hospital Association. The following is a list to guide surgery centers and hospitals for resuming procedures :
• Timing for Reopening of Elective Surgery – Reopening should be considered only after a sustained reduction in the rate of new COVID-19 cases in the relevant geographic area for at least 14 days.
• COVID-19 Testing within a Facility – Facilities should use available testing to protect staff and patient safety whenever possible and should implement a policy addressing requirements and frequency for patient and staff testing.
• Personal Protective Equipment – Facilities should not resume elective surgical procedures until they have adequate PPE and medical/surgical supplies appropriate to the number and type of procedures to be performed.
• Case Prioritization and Scheduling – Facilities should establish a prioritization policy committee consisting of surgery, anesthesia and nursing leadership to develop a prioritization strategy appropriate to the immediate patient needs.
• Post-COVID-19 Issues for the Five Phases of Surgical Care – Facilities should adopt policies addressing care issues specific to postponement of surgical scheduling related to COVID-19
• Collection and Management of Data – Facilities should reevaluate and reassess policies and procedures frequently, based on COVID-19 related data, resources, testing and other clinical information.
• COVID-related Safety and Risk Mitigation surrounding Second Wave – Facilities should have and implement a social distancing policy for staff, patients and patient visitors in non-restricted areas in the facility which meets then-current local and national recommendations for community isolation practices.
• Additional COVID-19 Related Issues including:
Healthcare worker well-being: post-traumatic stress, work hours.
Patient messaging and communication.
Case scheduling process.
Facility and OR/procedural safety for patients.
Preoperative testing process for COVID-19-positive and non-COVID-19-positive patients.
Environmental cleaning.
Prior to implementing the start-up of any invasive procedure, all areas should be terminally
cleaned according to evidence-based information.
In all areas along five phases of care (e.g. clinic, preoperative and OR/procedural areas,
workrooms, pathology-frozen, recovery room, patient areas, ICU, ventilators, scopes,
sterile processing, etc.)
Regulatory issues (The Joint Commission, CMS, CDC).
Operating/procedural rooms must meet engineering and Facility Guideline Institute standards for air exchanges.
Re-engineering, testing, and cleaning
Pandemics are like natural disasters; their timing and magnitude is unpredictable. COVID-19 arrived precipitously, spread rapidly and quickly overwhelmed the nation. History has proven that respiratory viruses don’t disappear and often linger for a few years or an effective vaccine is developed. H1N1 in 2009 lingered for approximately three years. A vaccine was developed and was introduced as a component of the annual flu. COVID-19 vaccine development has begun, but the outcomes remain unknown at this juncture.
The “new normal” is beginning to take shape. Facilities across the continuum of care are working through the challenges of realigning compromised infection prevention “best practices. Patient safety and prevention of transmission of hospital-acquired conditions, while temporarily disrupted, remains unchanged. Healthcare professionals have spent decades improving hand hygiene, disinfecting the environment, appropriate isolation of potentially transmissible patients and more. These “best practices” will require reeducation and training sooner than later as healthcare services resume.
Phenelle Segal, RN, CIC, FAPIC, is president of Infection Control Consulting Services.
The Role of Infection Preventionists in Antibiotic Stewardship Programs
By Sue Barnes, RN, CIC, FAPIC
This column originally appeared in the April 2020 issue of Healthcare Hygiene magazine.
Since their introduction in the 1940s, antibiotics have greatly reduced illness and death from all types of infections caused by bacteria. However, overuse has led to development of bacterial resistance, making the drugs less effective and creating bacteria that is more difficult to treat. Each year in the United States, at least 2 million people become infected with bacteria that are resistant to antibiotics, and 23,000 people die as a direct result of these infections.1 To promote the appropriate use of antibiotics, antibiotic/antimicrobial stewardship programs (ASP) have been implemented in hospitals nationwide, and are required by the Joint Commission and the Centers for Medicare and Medicaid.2 These programs are making progress in reducing resistance, and the incidence of infections caused by multidrug-resistant organisms. In addition, the appropriate use of antibiotics also serves to reduce the incidence of Clostridium difficile infections (C. diff), caused in part by the disruption of helpful intestinal bacteria.1
Various perspectives have been offered regarding the role of the infection preventionist (IP) in ASP. A 2019 paper published in AJIC on the subject suggests that “the absence of a clear role definition for IPs in ASPs is likely hindering IPs from contributing in consistent, meaningful ways.”3 This was written subsequent to publication of two key Association for Professionals in Infection Control and Epidemiology (APIC) documents, suggesting that there is still work to do to clarify the role of the IP in ASP. The updated APIC-Society for Healthcare Epidemiology of America (SHEA) position paper on the role of the IP in ASP, published in 2018, proposes the following ASP related functions for IPs: 4
1. Leadership commitment: Infection prevention and control (IPC) and antimicrobial stewardship (AS) program leaders must work together to align their programs, promoting communication and collaboration, and reducing the likelihood of redundant initiatives.
2. Action: IPs can leverage strong collegial relationships to influence and facilitate nursing’s supporting role in initiating antibiotic timeouts, performing antibiotic reconciliation during patient transitions of care, and educating patients and families.
3. Tracking: IPC programs perform surveillance for emerging pathogens and resistance patterns, as well as rapid response to every possible transmission.
4. Reporting: IPC programs are responsible for HAI surveillance and providing feedback of infection rates (e.g., multidrug-resistant organisms and Clostridioides difficile/CDI) and audit data (e.g., hand hygiene adherence) to clinicians and other stakeholders. CDI prevention is a high priority for IPC and AS programs, so sharing and disseminating antibiotic use and CDI infection rates is essential to prevention efforts.
5. Education: Some specific examples include providing education to frontline healthcare workers regarding the appropriate collection of urine cultures, cultures from endotracheal tubes, and indications for testing for CDI infections.
6. Diagnosis: It is essential for IPs, HEs, and the AS team to understand the scope of rapid diagnostic tests and work together to assist clinicians in interpreting and responding appropriately to results.
The second APIC paper published in 2019 was “Advancing the profession: An updated future-oriented competency model for professional development in infection prevention and control,” proposed the following actions for the IP role in ASP:5
1. providing consultative expertise
2. being a leader and advocate
3. identifying and detecting multidrug-resistant organisms
4. reporting surveillance trends over time
5. using surveillance data (e.g., treating asymptomatic bacteriuria, collecting contaminated specimens)
6. analyzing antibiograms and antibiotic use
7. assisting with early organism and infected patient identification
8. promoting compliance with standard and transmission-based precautions and other infection prevention strategies, such as care bundle practices and hand hygiene
9. developing and providing educational programs for staff, patients, and visitors
Other experts have recommended additional activities which arguably would cross the boundary into the competencies of other departments. For instance, participating in the production of the antibiogram as well as providing associated training, would seem to cross the boundary into responsibilities/competencies of the laboratory scientist.6,7 Also suggested to be within the purview of the IP is identifying bug-drug mismatches (i.e., whether a prescribed antibiotic is effective based on bacterial sensitivities). This would seem more within the purview of the pharmacist and physician.7-9
Not mentioned in any of these papers is arguably the most significant role for IPs in antibiotic stewardship programs – the prevention of healthcare-associated infections (HAIs). For every infection prevented, there are fewer antibiotics administered in addition to the associated resistance pressure, CDI risk, incidence, associated patient morbidity and healthcare cost. The APIC publications provide a high-level overview of the role of the IP in ASP, which can be built upon at the local level to provide more specific actions. Ongoing updates will be required moving forward due to the dynamic nature of the responsibilities of the IP.
Sue Barnes, RN, CIC, FAPIC is an independent clinical consultant, Board certified in Infection Control and Prevention, a Fellow of APIC (FAPIC) and co-founder of the National Corporate IP Director Network. She currently provides marketing and clinical consultation to select industry partners who seek to support infection prevention with innovative products.
References:
1. CDC Web page Antibiotic/Antimicrobial Resistance (AR/AMR) https://www.cdc.gov/drugresistance/
2. Dall C. New rule requires antibiotic stewardship programs in U.S. hospitals. Center for Infectious Disease Research and Policy; Sept. 26, 3019.
3. Weissenbach M. et al. Exploring the role of infection preventionists in antimicrobial stewardship programs through several lenses: A brief report. Am J Infect Control. 48 (2020) 106-107.
4. Manning, M et al. Antimicrobial stewardship and infection prevention—leveraging the synergy: A position paper update. A J Infect Control. Volume 46, Issue 4, 364 – 368.
5. Billings C et al. Advancing the profession: An updated future-oriented competency model for professional development in infection prevention and control. Am J Infect Control. 47 (2019) 602-614.
6. Moehring R et al. Challenges in Preparation of Cumulative Antibiogram Reports for Community Hospitals; J Clin Microbiol. Aug 2015, 53 (9) 2977-2982.
7. Perri L. The Infection Preventionist's Role in Antimicrobial Stewardship Programs. Infection Control Today. Oct. 6, 2017.
8. Al-Homaidan HT, Barrimah IE. Physicians' knowledge, expectations, and practice regarding antibiotic use in primary health care. Int J Health Sci (Qassim). 2018;12(3):18–24.
9. Duggan C, Joynes R, Rosado H. Pharmacy’s role in antimicrobial resistance and stewardship. Clinical Pharmacist. June 5, 2018.
Outbreak Readiness: How Prepared is Your Facility?
By Phenelle Segal, RN, CIC, FAPIC
This column originally appeared in the March 2020 issue of Healthcare Hygiene magazine.
For at least two decades, the U.S. has been planning for inevitable global pandemics, as evidenced by doubling of the National Institutes of Health (NIH) budget for biomedical research in 1998. The President’s Emergency Plan for AIDS Relief (PEPFAR) was created to stem the rising fear of devastation from Human Immunodeficiency Virus (HIV). However, health crises such as severe acute respiratory syndrome (SARS) that emerged in 2002, and Ebola in 2014, the U.S. response, together with the rest of the world, was considered slow and not well organized. Ebola proved that if basic systems had been in place, the epidemic could have been aborted at almost no cost, compared to the $5.4 billion that the U.S. funded.
Curbing epidemics is complex and requires a combination of money, additional manpower and with modern technology, the ability to diagnose, treat and prevent these diseases should be simpler.1
This article focuses on improvements nationwide for pandemic preparedness using Ebola’s arrival in the U.S. in 2014. Ebola Virus Disease (EVD) created an urgent need for pandemic preparation when the primary patient responsible for introducing the virus into the country fell through the cracks after his initial visit to a hospital in Texas. Ebola preparedness placed a heavy financial and human resource burden on healthcare facilities across the nation. Acute-care hospitals were provided guidance by the Centers for Disease Control and Prevention (CDC) via their “Interim Guidance for Preparing Frontline Healthcare Facilities for Patients Under Investigation (PUIs) for Ebola Virus Disease (EVD).” CDC guidance also included a detailed checklist for hospitals and specified that this could be used for Ebola as well as other infectious diseases. The result was much-improved awareness and preparedness for the inevitable; however, the question remains whether the healthcare industry can ever be fully prepared?
Novel respiratory viruses including severe acute respiratory syndrome (SARS Co-V) in 2003, H1N1 influenza (swine flu) in 2009 and Middle East respiratory syndrome (MERS Co-V) in 2012 reminded the world that ongoing preparation -- particularly in the acute-care setting -- is vital to the success of preventing an outbreak of major magnitude.
Once again, the U.S. currently faces the threat of a respiratory virus outbreak with the novel coronavirus known as COVID-19 that originates from and has sickened tens of thousands of people in China. The death toll has surpassed 1,500 at the time of writing. Similar to SARS and MERS, most often the virus spreads from respiratory droplets as a person-to-person transmission, when a person who is infected sneezes or coughs within the space of approximately 6 feet of others. As this novel virus has many unanswered questions to date, it is not certain whether surface contamination can infect mucus membranes including the mouth, nose or eyes.
Are We Prepared?
In October 2018, the U.S. Department of Health and Human Services (HHS), Office of Inspector General (OIG) released a report, “Hospitals Reported Improved Preparedness for Emerging Infectious Diseases After the Ebola Outbreak.” The OIG found that most acute-care hospitals in the nation were unprepared for the outbreak of Ebola in 2014, “…with 71 percent of hospital administrators reporting that their facilities were unprepared to receive Ebola patients. By 2017, administrators from only 14 percent of hospitals reported their facilities were still unprepared for emerging infectious disease (EID) threats such as Ebola.” Hospitals began updating their emergency plans, provided education and training for staff, particularly front-line staff, purchasing additional supplies and the very important task of conducting drills. HHS provided many resources, and these are available to date. The greatest challenges for hospitals to maintain preparedness includes immediate and day-to-day priorities taking precedence, preparing for natural disasters and staff time. In December 2014 it was reported that state health officials had designated 35 hospitals as “Ebola centers” and were ready to accept patients if necessary.
Pandemic Preparation for COVID-19
Outbreak or pandemic readiness is multi-layered and requires effort at the federal, state, local and individual facility levels, as evidenced by Ebola.
Pandemic preparation guidance for COVID-19 is changing daily as the experts learn more about this evolving illness. CDC continues to provide ongoing updates to healthcare professionals. These guidelines are extensive, and many resources are available for healthcare professionals in acute-care hospitals and for emergency medical service (EMS) personnel. Guidance for outpatient care and other inpatient facilities has not been provided at this juncture; however, the CDC does recommend that all healthcare providers and facilities refer to the guidelines to keep updated on the evolving situation. Key components to effective containment of this emerging virus include the following:
Evaluating and Reporting Persons Under Investigation (PUI)
The CDC clinical criteria for a 2019-nCoV person under investigation (PUI) have been developed based on what is known about MERS-CoV and SARS-CoV and are subject to change as additional information becomes available. Healthcare providers should obtain a detailed travel history for patients being evaluated with fever and acute respiratory illness. The CDC’s guidance for evaluating and reporting a PUI for MERS-CoV remains unchanged.
Criteria to Guide Evaluation of Persons Under Investigation (PUI) for 2019-nCoV
For any patient meeting criteria for evaluation for COVID-19, clinicians are encouraged to contact and collaborate with their state or local health department. For patients that are severely ill, evaluation for COVID-19 may be considered even if a known source of exposure has not been identified
Recommendations for Reporting, Testing and Specimen Collection
Healthcare providers should immediately notify both infection control personnel at their healthcare facility and their local or state health department in the event of a PUI for 2019-nCoV. State health departments that have identified a PUI should immediately contact CDC’s Emergency Operations Center (EOC).
Interim Healthcare Infection Prevention and Control Recommendations for Persons Under Investigation for 2019-nCoV
This section of the guidance is extensive and includes but is not limited to “Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings.
PPE for Healthcare Personnel
As the guidance states, “Healthcare personnel can protect themselves when caring for patients by adhering to infection prevention and control practices, which includes the appropriate use of engineering controls, administrative controls, and personal protective equipment (PPE). The CDC has issued guidance recommending the use of PPE for healthcare personnel caring for patients with confirmed or possible 2019-nCoV infection.”
In summary, emerging pathogens capable of spreading easily from person to person create a vulnerable and potentially dangerous situation worldwide, with the threat of outbreaks at any time. Immunity is usually absent, resulting in potentially severe repercussions for infected patients. History has shown that four influenza pandemics have occurred between 1918 and 2009. In addition, Ebola, the first hemorrhagic viral disease arrived in 2014.
Government, state and local agencies are working diligently to ensure that guidelines and resources are available for healthcare professionals, including those working in acute-care facilities, to prepare for an isolated patient or an influx of patients. It is the responsibility of these facilities to ensure that action plans for pandemic preparedness are developed, implemented, enforced and tested by performing drills at various times, to ensure that at any moment in time, they are prepared for the inevitable.
Phenelle Segal, RN, CIC, FAPIC, is president of Infection Control Consulting Services.
What to Look for in a Vendor Partner
By Linda Homan, RN, BSN, CIC
This article originally appeared in the February 2020 issue of Healthcare Hygiene magazine.
When it comes to infection prevention, we all want a silver bullet, a quick fix that cuts through complexity and provides an immediate solution to a problem. In truth, there is no silver bullet, but there are fundamental infection prevention measures that are proven to be effective in reducing healthcare-associated infections, such as hand hygiene, environmental hygiene, and instrument reprocessing.
In 2010, Wenzel and Edmond introduced the concept of horizontal and vertical infection prevention measures.1 Vertical measures are pathogen-based, reducing infection or colonization caused by specific pathogens in selected patient populations. They are often higher cost interventions as they may involve a microbiologic screening test, and they often are more resource intensive. Examples of vertical interventions are nasal decolonization to prevent transmission of MRSA, MDRO active surveillance and isolation precautions all of which are labor intensive and add cost to patient care. Horizontal measures are already part of routine patient care, are applied to all patients and are equally effective against superbugs as they work against garden-variety organisms.
Horizontal measures are generally less costly than vertical interventions and are consistent with patients’ need to avoid all infections, not just those due to specific organisms.2 The challenge is that horizontal measures often require modification of the day-to-day behaviors of healthcare workers, which means they are more difficult to sustain. They require ongoing education and feedback around a standardized process and buy-in from healthcare workers themselves in order to consistently practice the desired behavior. Hand hygiene, environmental cleaning and disinfection, and instrument reprocessing are horizontal measures and they include not only efficacious products, but also evidence-based processes and diligent practice by healthcare workers.
Product + Process + Practice = Sustained Performance Improvement
When it comes to horizontal infection prevention measures, it is not enough for vendors to offer a product and make a sale. Vendors should be held to a higher standard – they should be vendor partners. A vendor partner is an extension of your team and an asset to your hospital’s success. They are a partner who works with you from identifying a need and supplying a solution, to implementing and sustaining improvement with your facility’s team. It is not transactional, and it is not just a product.
Why should hospitals expect this level of service from their vendors? Because healthcare is complicated and changing quickly. Hospital margins are being pinched. Staff are being asked to do more with less. There are emerging pathogens that are threatening patient safety. A vendor partner’s goal should be your ongoing success as a healthcare provider – sustained performance improvement. But, in order to succeed in this new healthcare environment, we must move past that transactional relationship to a partner relationship that holds vendors to a higher standard and makes them part of a holistic, long-term solution.
A good vendor partner will provide:
A strong business case to help stakeholders understand the value of the solution
Data and actionable insights that are easy to understand and drive continuous improvement
Education in a variety of formats and languages
Timely and comprehensive on-site service
A solution that easily integrates into existing workflows
Onsite customer support to ensure a solution’s success
They must also be willing to partner with customers to standardize processes and improve healthcare worker practices. This requires evidence-based protocols, education and objective performance feedback so that hospitals understand exactly how they can make improvements. It’s a partnership that addresses not only at the product, but the processes and practices that will deliver performance.
I have worked on the business side of infection prevention for many years, but prior to that I was a practicing infection preventionist, certified wound care specialist and nurse manager for just as many years. In the infection prevention and wound specialist roles I worked with many vendors. Some were transactional – they would try to sell me something and, once sold, walk away - no educational support, no follow up, no ongoing connection. Others were more focused on establishing trust and partnership.
One of the most influential people in my career in those days was a sales representative for a wound care company. She was a wound, ostomy continence nurse herself prior to going into sales, and she taught me a lot -- not just about the dressings she was selling, but about wound care itself. She encouraged me to gain expertise that enabled me to take the exam to become a certified wound care specialist, which I did. I went on to become an infection preventionist and, recognizing the value of certification, quickly became certified in infection prevention and control.
The point of this short autobiographical sketch is to highlight the different approaches that manufacturers and their representatives have toward the customer. Some are transactional, some are partners. My wound care sales representative wasn’t just selling me a product, she was a consultant, providing me with the tools and information I needed to help my team improve patient care. Depending on what you are purchasing, either approach might be right. If you are purchasing tongue depressors, a transactional approach makes sense. However, if you are purchasing something more complex that needs to fit into your facility’s workflow, such as a product or service that has an impact on patient outcomes and hospital margins, then a vendor partnership is in order because they will help you see blind spots and opportunities for improvement and help you incorporate them into your facility’s operations. It is another set of eyes, a helping hand, a partnership. It makes sense.
Here are some things to look for in a vendor partner throughout the sales cycle:
Pre-sale
Before vendor partners suggest a solution, they should ask you about your facility. They should be listening to you and your challenges – problems that you’re trying to solve but haven’t been able to yet. Once they understand your operations, only then can they suggest solutions that can meet your needs. They should also be asking you about your facility’s demographics such as:
O Basic facility statistics (size, beds, etc.)
O Facility ratings
O Publicly available infection rates
O Patient population in your hospital
O Hospital and system strategic initiatives
Before asking for your business, vendor partners should provide you with strong, evidence-based resources to support their products. You don’t need to see clinical studies to decide which tongue depressor to buy, but, if the vendor is claiming to improve patient outcomes or operational efficiency, evidence is needed. Here is an example: not all efficacy claims need to be supported by a randomized, controlled trial. If a disinfectant has an EPA claim as a sporicide, a clinical study to prove that it kills spores is not necessary because EPA registration ensures that the product kills spores. The claim that the same sporicide reduces C. difficile infection rates when used as part of an overall environmental hygiene program, however, should be substantiated by clinical evidence.
Vendor partners should also be sharing their knowledge of industry trends. They focus on emerging issues and technology in their area of expertise and can help you “see around the corner” so that you’re prepared for what is coming next.
Some products and services require a trial before deciding to purchase. While your hospital may have unique circumstances to take into consideration, a strong vendor partner has a well-defined process to ensure an effective trial that can account for your circumstances. They will also have the resources (product, tools, training and people) to support the trial so that you aren’t taking on all the work by yourself. Remember, their job is to make your work better.
Before a trial begins though, it is critical that you and the vendor partner agree on metrics for success. The success criteria should be objective, measurable and achievable within the timeframe of the trial. For instance, while a product may help reduce healthcare-associated infections, the outcome measure of infection rate reduction is not measurable within the timeframe of a one-month trial. Rather, evaluate the process measure. During a trial for an electronic hand hygiene compliance monitoring system, one can measure the impact of the system on the process measure of hand hygiene compliance, but not the outcome measure of HAI reduction – that simply requires more time.
Value Analysis
Vendor partners help provide you with talking points for key conversations with hospital stakeholders by anticipating what questions will be asked, knowing stakeholder priorities, and providing appropriate data to share.
Once you’ve decided to take a product to the value analysis committee, vendor partners can help you prepare messaging that presents your case convincingly and helps stakeholders understand why they need to take your recommended actions. They do this by helping you:
O Target your message to the audience. Top priorities for a c-level executive are different than those of clinical staff, for instance, and top priorities for a CEO are not the same for CFOs or COOs either.
O Make strong comparisons. Compare the value of the solution you are recommending to what is currently being done.
O Bring the evidence. Provide well-supported research, studies, and other data that support your recommendation and resonate with your stakeholders.
Implementation
The collaborative vendor partner’s work is just beginning once the product has been approved for purchase. Work with your vendor partner to map out the implementation timeline and process. They should provide in-person education and training along with leave behind train-the-trainer resources for you to use when training new employees or providing refresher training.
And, because it’s difficult to measure or make improvements without good data, digital technology plays an increasing role in this space because it provides hospitals with actionable insights that they can use for continuous improvement. Vendor partners should provide comprehensive training on the collection, analysis and reporting of any insights that are derived as part of the product or service.
They will also help you evaluate what’s working and make contingency plans for addressing results that aren’t what you expect.
Ongoing support and partnership
Ongoing support and partnership are key deliverables from a vendor partner. The relationship doesn’t end with a purchase. Vendor partners should review data, provide education, follow up and service on a regular, mutually agreed upon cadence to ensure that you’re reaping the benefits of said solution. This is especially important when the solution being implemented is intended to drive behavior change such as hand hygiene or environmental hygiene compliance – it simply doesn’t happen overnight. It is a process that is optimized over time to accommodate your facility’s evolving needs.
Conclusion
When solving for complex issues that require behavior change, hospitals should be looking beyond products for a more holistic and long-term solution. Hospitals can improve results by partnering with vendors who work alongside them to develop lasting, customized, and programmatic solutions that address their specific needs. Something I think hospitals expect, but shouldn’t, is that improvements will fade (regress to the mean) over time. In fact, they should expect and be armed with the products, processes and practices that will continuously improve their performance over the lifetime of the solution.
Change can be hard, especially when it involves adjustments to behavior, but with the right vendor partner it is possible for hospitals to make comprehensive and sustainable improvements to horizontal measures that impact clinical and operational outcomes, while also cultivating the financial wellness of the hospital. Products alone simply don’t cut it anymore – hospitals can and should expect more from their vendor partners.
Linda Homan, RN, BSN, CIC, is senior manager of clinical affairs for Ecolab Healthcare.
References:
Wenzel RP, Edmond MB. Infection Control: The case for horizontal rather than vertical interventional programs. Int J Inf Dis 2010; S3-S5.
Edmond MB, Wenzel RP. Screening Inpatients for MRSA — Case Closed. N Engl J Med 2013; 368:2314-2315.
The Role of the Infection Preventionist in Product Purchasing
By Sue Barnes, RN, CIC, FAPIC
This column originally appeared in the February 2020 issue of Healthcare Hygiene magazine.
As healthcare costs continue to rise, the process of selection of clinical products must be objective and scientific. Because there are so many elements involved during this process, coordination by the value analysis committee is critical to ensuring both patient safety and cost containment. In the role as a core member of this committee, the infection preventionist (IP) serves a number of functions including:1,2
• Bringing formal proposals for the introduction of infection prevention products/technology incorporating evidence of efficacy and estimated return on investment (ROI);
• Providing consultation regarding the safety and efficacy of less expensive products supporting prevention of HAI, that may be proposed by the committee as a cost saving measure;
• Providing important guidance to ensure that any product or technology introduced can be effectively cleaned and disinfected if used on or around patients, and to ensure that the recommended products for cleaning/disinfecting are compatible with those in use at the facility;
• Supporting the committee’s assurance of a vendor’s capacity to provide adequate staff training in real time so that the product/technology will be used appropriately and result in optimal outcomes;
• Ensuring that any infection prevention product meets all evidence-based clinical guidelines and recommendations from regulatory and clinical organizations including the CDC.
Related to and supporting these functions are the additional important roles played by effective IPs, of early adopter and principle investigator for trials of innovative products supporting prevention of healthcare associated infection (HAI).3,4 A classic example of the IP role as early adopter has been demonstrated with the range of chlorhexidine gluconate (CHG) containing products. It was far in advance of randomized clinical trials proving efficacy of CHG in reducing infection risk, that IP departments began championing CHG based products starting with healthcare hand soap in the 1970s.5 It subsequently became a community standard and then decades later the Centers for Disease Control and Prevention (CDC) finally added it as a recommended practice in 2002.5 Similar time gaps can be seen between implementation of many other CHG containing products and the publication of randomized controlled trials and clinical guideline integration for infection prevention, including vascular access skin prep, impregnated central venous catheters, impregnated surgical and vascular dressings.5 In the absence of patient risk, many IPs champion products based on early evidence of efficacy in order to optimize patient safety. It is a certainty that many patient lives have been saved as a result of this philosophy of early adoption.
The role of principle investigator and/or participant in studies of innovative products is equally important in the quest for zero preventable HAI. From simple before and after studies, to large double blind randomized controlled studies, IPs have participated in and led trials of innovative products designed to reduce HAI risk, building the evidence base for efficacy. This typically initially leads, often only after many years. to establishing a community standard, and then much later to inclusion in clinical guideline(s).6
IP and Industry Collaboration
From the frontlines of healthcare in hospitals and clinics to the corporate offices of the Association for
Professionals in Infection Control and Epidemiology (APIC), IPs work collaboratively with industry partners to
introduce innovative products and technology designed to optimize patient safety by reducing HAI risk.7 At the
corporate level the APIC Strategic Partner Program is a formal, mutually beneficial partnership between APIC
and Industry Partners united in the common goal of reducing the risk of infection. The industry partners play an important role in supporting many of the programs and services that makes the APIC membership so valuable. More recently Industry Perspectives has been introduced by APIC, an online resource for IPs and healthcare workers to stay up-to-date on products, services, research, and innovation relevant to the field of infection prevention and control.
An important opportunity for IP professionals at all levels to learn about new infection prevention products, and develop relationships with industry partners, occurs annually during conferences including the annual meetings of APIC and the Society for Healthcare Epidemiology of America (SHEA). When visiting the vendor exhibit-hall during these conferences it’s helpful to be prepared with a few standard questions for vendors such as:
1. What studies providing evidence of efficacy have been published in peer reviewed journals and/or presented at conferences?
2. Does the data available address reduction of bacterial loads only, or also reduction of infection rates?
3. Can the vendor connect you with an IP at another facility using the product with good results?
Industry partners often offer a range of supportive services that can be leveraged by IP departments to reduce diversion of constrained IP resources. For instance, since tracking of compliance with appropriate product use is time consuming, this is a significant value-added service often provided by industry partners. Most vendors are also willing and able to partner with the clinical teams to provide direct observation, coaching and teaching when new product(s) are introduced. Collaboration between industry partners and IP professionals simply makes patients safer.
References:
1. Henry A. Product Evaluation. APIC Text Online Chapter 5; October 3, 2014.
2. Valenti W. Infection control and product evaluation. Infectious Disease Advisor - Hospital Infection Control. 2017.
3. Conway L et al. Tensions inherent in the evolving role of the infection preventionist. Am J Infect Control. Vol. 41, No. 11, 959-964.
4. Barnes S, et al The emerging role of the corporate or system-level infection prevention director for integrated delivery networks. Am J Infect Control. Vol. 47, No. 6, 638-642.
5. Chlorhexidine Facts: https://chlorhexidinefacts.com/
6. Pyrek K. Injecting the research and resources into infection prevention. Infection Control Today. May 17, 2018.
7. Humphreys H. New technologies in the prevention and control of healthcare-associated infection, J R Coll Physicians Edinb. 2010 Jun;40(2):161-4.
Leading the Way to Zero: Moving Purposefully Forward Together
By Sylvia Garcia, MBA, RN, CIC
This column originally appeared in the January 2020 issue of Healthcare Hygiene magazine.
At the opening of the 2006 annual meeting of the Association for Professionals in Infection Control and Epidemiology (APIC), then-APIC president Kathleen Arias said, “Zero tolerance is not a number—it’s a culture in which healthcare providers strive to prevent as many healthcare-associated infections as possible. We may never eliminate every infection, and many cannot be prevented, but infection control professionals should accept nothing less than the very lowest rates of infection.”
Back then, I sat in the audience and thought to myself, great idea, but is it achievable? Which infections should we prioritize? What are the key interventions? How do we get support from leadership and staff? (I wasn’t even thinking about the patient or their family at that point.)
There were already evidence-based guidelines available from Centers for Disease Control and Prevention (CDC) and other professional organizations on a variety of key topics. The next year, the Centers for Medicare & Medicaid Services (CMS) published payment reforms intended to increase emphasis on value-based purchasing which identified central line-associated bloodstream infections (CLABSI) and indwelling catheter-associated urinary tract infections (CAUTI) as “never events.” So, I knew CLABSI and CAUTI would be on leaderships’ list of priorities, but was this enough?
The answer would become clearer during 2008 when the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), APIC, and the Joint Commission worked together to create the Compendium of strategies to prevent healthcare-associated infections in acute-care hospitals. These documents focused on implementation of basic strategies to prevent the most common healthcare associated infections (HAIs) as well as providing special approaches when basic practices were not enough. They also recommended that accountability be assigned and proposed performance metrics to monitor quality improvement efforts.
Information from the CDC, the Compendium and other professional organizations soon became an even greater organizational priority when the Joint Commission added three new requirements to national patient safety goal (NPSG) 7: Reduce the Risk of Healthcare Associated Infection in 2009 and an additional topic area in 2012
• Implement evidence-based practices to prevent health care–associated infections due to multidrug-resistant organisms (MDRO)
• Implement evidence-based practices to prevent CLABSI
• Implement evidence-based practices for preventing surgical site infections (SSI)
• Implement evidence-based practices to prevent CA-UTI
Today, the results of concentrated efforts to identify key interventions and reduce risk by implementing evidence-based practices are clear. Nationally, among acute care hospitals, significant progress has been made. For example, between 2017 and 2018, an 8 percent to 12 percent statistically significant decrease in CAUTI, CLABSI and hospital-onset C. difficile infections was reported. However, there was no significant decrease in SSI rates.
According to point prevalence surveys of hospitals conducted in 2011 and then again in 2015, there has also been a statically significant (p<0.0001) decrease in HAI amongst hospitalized patients: 1 in 25 (4 percent) versus 1 in 31 (3.2 percent), respectively. Pneumonia, gastrointestinal infections (most of which were due to Clostridium difficile) and surgical-site infections were the most common health care-associated infections infection identified.
As the following NPSGs are moved to standards effective July 1, 2020, organizations need to continue to implement evidence-based practices.
• NPSG.07.03.01—Multidrug-resistant organisms
• NPSG.07.04.01—Central line–associated bloodstream infections
• NPSG.07.05.01—Surgical site infections
• NPSG.07.06.01—Catheter-associated urinary tract infections
Organizations should also be aware that in November 2019, the CDC released a report about the threat of antibiotic-resistant organisms and the statistics are eye-opening: “…antibiotic-resistant bacteria and fungi cause more than 2.8 million infections and 35,000 deaths in the United States each year. That means, on average, someone in the United States gets an antibiotic-resistant infection every 11 seconds and every 15 minutes someone dies.”
To keep patients, visitors and staff safe, organizations should be ready to implement CDCs recommended containment strategies when these organisms are identified. This includes ensuring compliance with existing Joint Commission focus areas, including:
• Implementation of standard and transmission-based precautions
• Making appropriate personal protective equipment available to staff
• Training staff on selection, limitations, maintenance, donning and removal of personal protective equipment
• Enforcing use of appropriate personal protective equipment
Note: Examples of potential survey findings related to the aforementioned areas were published in the August 2019 edition of Perspectives, under the “Consistent Interpretations” section.
We are making progress but there is still much work to be done both for the common infections that occur in healthcare such as SSI, and those, such as antibiotic resistant organism and other high- consequence organisms, that loom on the horizon.
Each healthcare organization needs to look within and conduct an accurate risk assessment – and ask: where are the low hanging fruit and the biggest risks? Are leadership, staff, patients, their families and their significant others are involved? And, is everyone working together to prioritize, plan, implement, and monitor?
If we all hold ourselves and our colleagues responsible and accountable…together we can get to zero HAIs!
So, 14 years later, do I think that we can achieve zero HAIs? My answer is a resounding Yes!
Sylvia Garcia, MBA, RN, CIC, is director of infection prevention and control within the of Division of Healthcare Improvement at the Joint Commission.
References:
1. Association for Professionals in Infection Control and Epidemiology. Prevention Strategist. 40 Years of Growth and Progress. Winter 2012.
2. Centers for Medicare & Medicaid Services (CMS), HHS. Medicare program: changes to the hospital inpatient prospective payment systems and fiscal year 2008 rates. Federal Register. 2007;72(162):47129–48175.
3. Centers for Disease Control and Prevention. 2018 National and State Healthcare-Associated Infections Progress Report. Available at: https://www.cdc.gov/hai/data/portal/progress-report.html
4. Magill SS, et.al. Changes in prevalence of healthcare associated infections in U.S. Hospitals. N Eng J Med. 2018 Nov 1;379(18):1732-1744. doi: 10.1056/NEJMoa1801550
5. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States – 2019. Available at: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf .
6. Centers for Disease Control and Prevention. Containment Strategy Responding to Emerging AR Threats. Available at: https://www.cdc.gov/hai/containment/index.html.