Tracer Methodology: An Important Infection Control Tool for Identifying Risk
By Sylvia Garcia-Houchins
This article originally appeared in the October 2022 issue of Healthcare Hygiene magazine.
Each infection prevention and control program within healthcare organizations across the nation is unique. All infection prevention programs should share similar foundation and structure, but each individual program is shaped by its healthcare organization’s unique culture, physical location(s), and staff. Additionally, each program contains various combinations of care treatment, services, supplies, products, and equipment.
It is the uniqueness and ever-evolving nature of each healthcare organization that validates the importance of periodically using The Joint Commission’s tracer methodology as a diagnostic tool. Tracer methodology is the process that Joint Commission surveyors use to analyze a healthcare organization’s systems or processes for delivering safe, high-quality care. It is used to identify real and potential patient safety risks.
By periodically using tracers, infection preventionists can not only monitor for compliance with set requirements (checklist approach) but can also use a broader review to identify and assess variations in processes and practices. Some variations are completely acceptable, while others are potentially dangerous and could put healthcare organizations, staff, patients, and visitors at risk.
While using tracer methodology Joint Commission surveyors analyze processes by following an individual patient through a healthcare organization’s care processes in the sequence experienced by that individual. The tracer methodology process may require visiting just one or multiple care settings to review the care rendered and the systems to support that patient’s care. As often witnessed during survey, tracer methodology helps identify varying level of risk – including some that pose an immediate threat to a patient’s health or safety and require immediate action to mitigate the risk.
An infection preventionist can use tracers to identify risk that may have resulted in a patient developing a healthcare-associated infection, to proactively identify risk that could result in an infection, or to review a newly implemented risk-reducing healthcare system.
For example, an infection preventionist could trace a patient with a central venous catheter (central line, trace the care of a patient who developed a central line-related bloodstream infection or trace a system that has been implemented to decrease risk of central line infection.
By tracing the patient’s locations beginning with where the initial decision was made to insert a central line, to the location of insertion, to each location where it is used or accessed, infection preventionists can identify risks that could be acted upon to decrease the risk of central line related bloodstream infection for future patients.
Important aspects of a good tracer process include:
Invite variety. Do not follow the same tracer path every time
Always keep an open mind when collecting tracer data
Ask open ended questions that lead to a follow-up question or create a “show me?” moment
Collect information that can be further explored– either immediately or when time allows
Unless a patient is at immediate risk, do not immediately begin remedying – the purpose is to collect tracer data
Do not place blame during tracer processes
Example scenario of tracing a patient
To better illustrate the tracer process, consider the basic example of an individual patient tracer utilized to trace a patient with a central line. Tracers can begin anywhere, but for this example scenario we first visit the healthcare facility’s oncology floor to identify a patient with a central line.
Then, we review her medical records. Medical records indicate the patient needed a central line for administration of chemotherapy, and subsequently, she had it inserted in the interventional radiology department. (Patient education is documented by the clinic before the insertion, and by radiology before and after the procedure.) Further tracing shows that the patient’s central line has been accessed at the hospital’s infusion center emergency department, inpatient oncology unit, and general medicine unit as well as the hospital’s off-site infusion center.
Next step, the patient is interviewed. She explains that she was overwhelmed by her diagnosis and depends on her husband to remember what she is supposed to do. She remembers being told that she would need a central line placed for chemotherapy and subsequently had it inserted the next week in Radiology. Placement of a central line was not presented as an option, but as a mandatory step, if a patient is to receive chemotherapy. Staff explained the procedure and directed her not to shower until the insertion site was healed. She was provided written instructions at her first chemotherapy visit the following week with direction to look out for redness, swelling, pus, and fever. She was also given direction to call the clinic or an after-hours phone number to report any problems.
Since the inception of the patient’s treatment, nurses in outpatient chemotherapy used a kit to access the central line but since she was admitted, no kit was available. Similar supplies were used when accessing the central line to administer medications, however the technique varied a bit. The emergency room (ER) nurse used alcohol before carefully accessing the patient’s central line. She drew blood for tests yet seemed very nervous. The patient noted that nurses who accessed her central line usually wear a mask, but few requested the patient also wear a mask.
The patient understands that infection of her central line is a significant risk, and she needs to protect it, however she is unsure of what the nurse who gave her the written instructions meant by directing her to protect her line. When asked to role play what she would do if a healthcare professional accessed her central line incorrectly, the patient says she assumes that staff know what they are doing, Further, she says she would never question the care provided by a health professional and doesn’t want to be seen as a difficult patient.
When retracing all locations, the patient has visited, we discover that there are two types of central line access kits in use – one kit includes chlorhexidine containing skin preparation and the other includes plain alcohol. Nurses are allowed to choose according to preference, but most use the chlorhexidine product because it is known to better disinfect. We also find that the healthcare facility’s general medicine unit and emergency room do not stock central line access kits. These areas, instead, gather patient supplies as necessary.
Interviews with staff outside of the infusion areas and oncology unit identify varying levels of experience working with central lines and some nurses say they have yet to complete a competency assessment but have been taught by a colleague, key steps of central line access. One of the nurses in the ER says she asks for oncology staff to access a patient’s central line if it looks like that patient will be admitted. Otherwise, the nurse insists that physicians order a peripheral blood draw and if necessary, a peripheral IV. Undoubtably, the tracer information collected shows that considerable variation exists regarding central line dressing protocol, depending on the location.
Observations from this tracer example scenario highlight variations in practice, supplies, education, and competency of staff caring for patients with central lines. In this example case, provided patient education failed to achieve its desired objective, since the patient is uncertain of the healthcare organization’s approved process for accessing her central line and does not feel empowered to speak up if staff deviates from the process.
Information from this tracer could be used in multiple ways, including:
Prioritizing tracer information based on risk and using it to develop an infection prevention and control plan for patients with central lines
Utilizing tracer information as a starting point for more in-depth study and resolution of an issue Exploring how to improve patient education and empower patients to speak up
Providing data results to a performance improvement team to plan and implement a rapid- cycle plan to improve supply chain issues
Analyzing root causes to determine why implemented processes have not been sustained
Opportunities to use tracer information are only limited by the staff member who collects it. Often infection preventionists want to continue to collect more extensive data to prove that an issue is real, however they fail to act, because they want their “data” to be perfect. Occasionally, that approach may be appropriate, but at other times, action immediately needs to be taken.
Using tracer methodology may move some infection preventionists out of their routine “surveillance” comfort zone. Others recognize it provides opportunity for positive interaction with patients and staff and helps identify risk that might not have been detected though routine surveillance, compliance rounding, or use of checklists. Tracer methodology is one more tool infection preventionists can use to identify risk for infection. It is worth giving tracer methodology a try.
Access more in information about The Joint Commission’s tracer methodology here.
Sylvia Garcia-Houchins is director of infection control and prevention, Office of Quality and Patient Safety, The Joint Commission.
My Patient Has a Diagnosis of Monkeypox, What Do I Need to Know?
By Margaret M. Miller, BS, MT(ASCP) M CIC FAPIC, and Susan Singh, MPH, CIC
This article originally appeared in the September 2022 issue of Healthcare Hygiene magazine.
What is Monkeypox?
Monkeypox is caused by the Monkeypox virus which belongs to the Orthopoxvirus genus in the family Poxviridae. Monkeypox is usually a self-limited disease with the symptoms lasting two to four weeks. There are two distinct genetic clades (strains) of the Monkeypox virus: the Central African (Congo Basin) clade and the West African clade. The current 2022 outbreak is of the West African clade and is typically associated with less severe illness. More than 99 percent of people who get this form of the disease are likely to survive. However, people with weakened immune systems, children under eight years of age, people with a history of eczema, and women who are pregnant or breastfeeding may be more likely to get seriously ill or die.
What do I need to know about Monkeypox?
Monkeypox can spread from person-to-person through:
• Direct contact with the infectious rash, scabs, or body fluids
• Respiratory secretions during prolonged, face-to-face contact, or during intimate physical contact, such as kissing, cuddling, or sex
• Touching items (such as clothing or linens) that previously touched the infectious rash or body fluids
• Pregnant women can spread the virus to their fetus through the placenta
If you have cared for a Monkeypox patient, be alert to the development of symptoms (fever, chills, new rash, or lymphadenopathy) for 21 days after the last date of care, and notify infection control, occupational health, and the health department to be guided about a medical evaluation.
• Healthcare workers who have unprotected exposures (i.e., not wearing PPE) to patients with Monkeypox do not need to be excluded from work duty, but should undergo active surveillance for symptoms, which includes measurement of temperature at least twice daily for 21 days following the exposure. Prior to reporting for work each day, the healthcare worker should be interviewed regarding evidence of fever or rash.
• Healthcare workers who have cared for or otherwise been in direct or indirect contact with Monkeypox patients while adhering to recommended infection control precautions may undergo self-monitoring or active monitoring as determined by the health department.
What do I need to do differently for a patient with Monkeypox?
Notify the infection prevention and control department that a patient with signs and symptoms of Monkeypox has been admitted.
Have a policy in place that is customized to your facility’s needs and outlines the management of patients with suspected or confirmed Monkeypox.
Transmission-based precautions and patient placement
• Patients with suspected or confirmed Monkeypox infection should be placed in a single-person room; special air handling is not required. The door should be kept closed (if safe to do so). The patient should have a dedicated bathroom.
• Transport and movement of the patient outside of the room should be limited to medically essential purposes. If the patient is transported outside of their room, they should use well-fitting source control (e.g., medical mask) and have any exposed skin lesions covered with a sheet or gown.
• Intubation and extubation, and any procedures likely to spread oral secretions, should be performed in an airborne infection isolation room (AIIR)
• Use of portable fans, dry dusting, sweeping, or vacuuming should be avoided to prevent re-suspending the dried material from lesions
• Ensure signage is posted on patient’s door with the appropriate transmission-based precautions
Personal protective equipment (PPE)
PPE used by healthcare personnel who enter the patient’s room should include:
• Gown
• Gloves
• Eye protection (i.e., goggles or a face shield that covers the front and sides of the face)
• NIOSH-approved particulate respirator equipped with N95 filters or higher
Waste management
Waste management (i.e., handling, storage, treatment, and disposal of soiled PPE, patient dressings, etc.) should be performed in accordance with U.S. Department of Transportation (DOT) Hazardous Materials Regulations (HMR; 49 CFR parts 171-180.)
Required waste management practices and classification currently differ depending on the Monkeypox virus clade.
• West African Clade (current 2022 outbreak): Waste contaminated with the West African clade should be managed as UN3291 Regulated Medical Waste (RMW) in the same manner as other potentially infectious medical waste.
• Congo Basin Clade: Congo Basin clade is classified as Category A under the DOT hazardous materials regulations. See the DOT website for additional information.
Environmental infection control
Standard cleaning and disinfection procedures should be performed using an Environmental Protection Agency (EPA)-registered hospital-grade disinfectant with an emerging viral pathogen claim found on EPA’s List Q. Follow the manufacturer’s directions for concentration, contact time, and care and handling.
Soiled laundry should be gently and promptly contained in an appropriate laundry bag. It should not be shaken or otherwise handled in a manner that may disperse infectious particles.
Duration of precautions
Monkeypox can spread from the time symptoms start until the rash has fully healed and a fresh layer of skin has formed. Decisions regarding discontinuation of isolation precautions in a healthcare facility should be made in consultation with an infectious disease physician and the infection prevention and control department. Isolation precautions should be maintained until all lesions have crusted, those crusts have separated, and a fresh layer of healthy skin has formed underneath.
Visitation
Visitors to patients with Monkeypox should be limited to those essential for the patient’s care and wellbeing (e.g., parents of a child, spouse).
Margaret M. Miller, BS, MT(ASCP) M, CIC, FAPIC, is an infection preventionist with ECRI.
Susan Singh, MPH, CIC, is an infection preventionist with ECRI.
Resources:
Management of Patients with Suspected or Confirmed Monkeypox Virus. ECRI (pending publication). 2022
Monkeypox – Infection Control in Healthcare Settings. CDC. July 2022: https://www.cdc.gov/poxvirus/monkeypox/clinicians/infection-control-healthcare.html
PA DOH fact sheet: https://www.health.pa.gov/topics/Documents/Diseases%20and%20Conditions/Monkeypox.pdf
Monitoring Persons Exposed. CDC. June 2022: https://www.cdc.gov/poxvirus/monkeypox/clinicians/monitoring.html
The Role of Environmental Hygiene in the Prevention and Control of Candida auris Transmission
By Susan Singh, MPH CIC
This article originally appeared in the July 2022 issue of Healthcare Hygiene magazine.
Candida auris (C. auris) is a serious public health threat. First identified in Japan in 2009, it is a multidrug resistant fungus which has caused outbreaks in healthcare facilities. Infections caused by C. auris often do not respond to commonly used antifungal drugs, making them difficult to treat and leading to severe infections and high mortality.
Many healthcare facilities around the world have reported surges of C. auris cases during the COVID -19 pandemic, most likely because of competing priorities and changes in infection prevention and control (IPC) practices during the pandemic. Further compounding these contributing factors to C. auris transmission, C. auris persists in the healthcare environment on various fomites and surfaces for weeks. Several studies have looked at the survival range for C. auris on various surfaces (Figure 1), suggesting that contaminated surfaces may be an important source of acquisition. C. auris frequently forms biofilms on surfaces. Research has shown that C. auris can survive on both wet and dry biofilms, making it harder to eradicate from the environment once it has been introduced.
Figure 1
Material Survival Range
Glass 3 days
Plastics > 14 days
Steel > 7 days
The fundamental element of cleaning to prevent transmission is highlighted in one outbreak investigation in the neurosciences intensive care unit at a hospital in the United Kingdom with a cluster of C. auris cases. Between Feb. 2, 2015, and Aug. 31, 2017, the unit identified 70 patients either colonized or infected with C. auris. The authors found an association of C. auris positivity with patients who had skin-surface axillary temperature monitoring via use of reusable probes. As the presumed source of C. auris, all temperature probes were removed from use. However, probe use was reestablished during the annual leave of a senior nurse, and C. auris acquisition continued. All probes were completely removed and cultured —C. auris was isolated from four of five probes presumed to be recently used, while none of the five probes in storage grew C. auris.
Beyond proper cleaning and disinfection, C. auris prevention requires other IPC practices. In July 2020, a Florida acute-care hospital faced an outbreak of C. auris on its specialty care unit dedicated to COVID-19 patients. A cluster of three C. auris bloodstream infections and one urinary tract infection prompted a joint outbreak investigation by the Florida Department of Health and the Centers for Disease Control and Prevention (CDC). Various breaches were identified including healthcare personnel (HCP) using multiple gown and glove layers, extended use of the underlayer of personal protective equipment (PPE), gaps in cleaning and disinfection of shared medical equipment/environment, and low hand hygiene compliance. After implementing enhanced cleaning and disinfection practices, removing supplies from hallways, and discontinuing base PPE layer practices, C. auris transmission halted.
If C. auris has been identified at your facility, here are some examples of steps you can take to ensure a safe environment for patients/residents, healthcare workers, and visitors:
Disinfectant selection and contact time: The disinfectant used for patient-care equipment and/or the environment should be listed on the Environmental Protection Agency (EPA)’s List P: Antimicrobial Products Registered with EPA for Claims Against auris. It is also imperative that the contact time for the disinfectant selected is strictly followed. If the surface being disinfected dries before the contact time, the surface must be wiped down again.
Reusable patient care equipment:
If possible, dedicate reusable patient-care equipment for each auris patient (i.e., bladder scanner, vital signs machine, stethoscope).
Observe the workflow of HCP to confirm “dirty” equipment is not brought outside the room (i.e., “dirty” glucometer machine being placed on the isolation cart outside patient room while the HCP doffs PPE inside the patient room). Develop a workflow to ensure contamination does not occur inside or outside the room.
Audits: Initiate and/or increase the number of hand hygiene, PPE, and cleaning/disinfection audits. Provide real-time feedback and correction to non-compliant observations.
Cleaning and disinfection responsibilities: Ensure all equipment is assigned an owner responsible for cleaning and disinfection. For example, identify if nursing or environmental services is responsible for disinfecting medication pumps during a hospital stay. At terminal cleaning a medication pump may be sent to the sterile processing department for cleaning and disinfection.
Cohorting:
Consider cohorting infected and/or colonized patients to one side of the unit or floor –avoid having a C. auris negative patient surrounded by two auris patients
If feasible, consider cohorting staff
Procedural areas:
Confirm procedural areas are made aware when they are receiving a auris positive patient and know the appropriate PPE to wear
When possible, C. auris patients should be scheduled for the last case of the day to allow for thorough terminal cleaning
Supplies: Minimize the number of supplies/carts in the hallway which may easily be contaminated. Efforts must be made to take in all supplies needed for patient care upon initial entry into a auris positive patient room, thereby, minimizing the potential to contaminate supply carts.
Since its emergence more than a decade ago, the spread of C. auris across the world remains unabated. As we continue to see cases, we must remain vigilant in our efforts to mitigate C. auris transmission with strict adherence to IPC policies and procedures.
Susan Singh, MPH CIC, is an infection preventionist with ECRI.
References:
Eyre DW, Sheppard AE, Madder H, Moir I, Moroney R, Quan TP, Griffiths D, George S, Butcher L, Morgan M, Newnham R, Sunderland M, Clarke T, Foster D, Hoffman P, Borman AM, Johnson EM, Moore G, Brown CS, Walker AS, Peto TEA, Crook DW, Jeffery KJM. A Candida auris Outbreak and Its Control in an Intensive Care Setting. N Engl J Med. 2018 Oct 4;379(14):1322-1331. doi: 10.1056/NEJMoa1714373. PMID: 30281988.
Morbidity and Mortality Weekly Report (MMWR) Candida auris Outbreak in a COVID-19 Specialty Care Unit — Florida, July–August 2020 Weekly / January 15, 2021 / 70(2);56-57.
Schelenz, S., Hagen, F., Rhodes, J.L. et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control 5, 35 (2016). https://doi.org/10.1186/s13756-016-0132-5
Smith J, et al. 2019 Clinical Microbiology Reviews.
Welsh RM, Bentz ML, Shams A, Houston H, Lyons A, Rose LJ, Litvintseva AP. Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast Candida auris on a Plastic Health Care Surface. J. Clin. Microbiol. 2017, 55, 2996-3005.
Widmann JE, Kirchhoff L, Brüggemann Y, Todt D, Steinmann J, Steinmann E. Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms. 2021 Feb 9;9(2):343. doi: 10.3390/microorganisms9020343. PMID: 33572303; PMCID: PMC7916105.
How Healthcare Organizations Can Better Manage Commercially Prepared Sterile Supplies
By Diane Cullen, MSN, MBA, RN, CIC
This column originally appeared in the June 2022 issue of Healthcare Hygiene magazine.
Managing commercially prepared sterile supplies is an essential task and can be challenging for many healthcare organizations. As part of their effort, healthcare organizations must identify optimal locations within their facilities to store supplies so that staff can readily access them. Healthcare organizations must ensure supplies are being stocked to peak levels while keeping alert to expiration dates so that items do not expire. Additionally, storage areas must be properly maintained so that supplies are stored safely and kept in good condition while protecting them from contamination.
The Joint Commission receives multiple inquiries every week related to sterile supply storage concerns. By recognizing some of the following practices, healthcare organizations can better understand The Joint Commission’s expectations for managing and storing packaged sterile supplies within healthcare facilities.
Device Labeling
According to the Food and Drug Administration (FDA), manufacturers of certain medical devices and products must include labeling on or within their devices. ‘Labeling’ includes all actual labels and other written, printed, or graphic information located on equipment, devices, or wrappers. This includes but is not limited to instructions for use (IFU). Additionally, The Joint Commission requires that healthcare organizations follow manufacturer’s written instructions for use (IFU) to ensure the end-user understands how to properly use, clean, disinfect, reprocess, and store medical devices.
Below are six criteria manufacturers generally include in device labeling:
1. Reflect the intended use of the device (e.g., single use, single patient use)
2. Advise the end-user on how to thoroughly clean the device
3. Indicate the correct microbiocidal process (e.g., sterilization, high, intermediate, or low- level disinfection) for the device based on intended use
4. Include technically feasible Instructions
5. Provide comprehensive Instructions
6. Offer understandable Instructions
Device Labels
In 2016, the FDA published a final rule (21 CRF Parts 660, 801 and 809) which revised its medical device labeling regulations to allow for optional inclusion of symbols in labeling without additional explanatory text (e.g., ‘stand-alone symbols) if certain criteria were met. A device label may include important symbols that help end users easily understand key information about an item at a glance. For example, many commercially prepared sterile devices will include a manufactured date (the date the item was manufactured) which should not be confused with the expiration date (the date the item may no longer be used).
A single-use device intended to be used on an individual patient during a single procedure and then discarded may be represented by the number “2” with a horizontal slash across. Conversely, a medical device intended for a single-patient use, meaning it may be used on one patient but may be reprocessed between use per IFU is indicated by a completely different symbol. Another symbol with infection prevention implications on device packaging is the symbol for ‘Do not re-sterilize,’ which indicates the sterile medical device within the package must not be re-sterilized after being sterilized once. Additionally, the label may also include symbols that indicate temperature and humidity requirements for storage.
Included below are examples of common symbols that may be included on your packaged sterile products and their meanings.
Applying the Hierarchical Approach to Infection Prevention to Packaged Sterile Supplies and Devices:
The Joint Commission receives many questions about whether temperature and humidity monitoring are required for packaged sterile devices and instruments. It is important to follow the hierarchy when developing your practices around storage of these products.
Rules and Regulations
The first level of the hierarchy is that a healthcare organization ensures it is compliant with all building code requirements. Deemed organizations must fulfill Centers for Medicare and Medicaid Services (CMS) ventilation requirements which outline criteria for new or renovated existing facilities (constructed or plans approved on or after July 5, 2016). These are provided in the 2012 edition of NFPA 99 which references the 2008 edition of ASHRAE 170 table 7.1. If a local authority has published building codes, then a healthcare organization must meet the most restrictive requirement.
ASHRAE Standard 170- 2008 Table 7.1 ventilation requirements for sterile storage in CENTRAL MEDICAL AND SURGICAL SUPPLY areas. If an organization is storing sterile items in a room designated as a Central Medical and Surgical Supply Area, the following will be required:
• Positive air pressure relationship to adjacent areas
• Minimum outdoor air exchange two per hour
• Minimum total air exchange four per hour
• Maximum relative humidity of 60 percent
• Temperature range 72 to 78 F or 22 to 26 C
CMS Requirements
The CMS Infection Control Worksheet for the Hospital (HAP) and Ambulatory Surgical Center (ASC) accreditation programs is one of CMS’ requirements. Depending on the type of facility surveyed, these organizations must meet Conditions of Participation (CoP) or Conditions for Coverage (CfC). CMS requires that sterile packages are stored so that sterility is not compromised, and sterile items are inspected for integrity before use.
Manufacturer’s Instructions for Use
Organizations must be compliant with the manufacturer's instructions for storage as indicated on the label. If, for example, the manufacturer of the sterile supply requires a specific temperature and humidity requirement for storage, an organization would need to demonstrate during survey that these requirements are being met. The Joint Commission does not specifically require that these parameters be documented, however a facility’s staff should be able to identify if any sterilized supply, has been potentially compromised (as may occur if the integrity of the package is in question or has evidence of damage from humidity) and should be able to determine whether that item would be appropriate for use.
Evidence-Based Guidelines and National Standards
Health care organizations may refer to evidence-based guidelines and national standards (EBGs) for guidance for how sterile supplies should be stored. Most EBGs agree that sterile supply areas must be clean, well ventilated and should protect supplies from contamination, moisture, dust, temperature extremes, and humidity extremes. Healthcare organizations must show evidence that, whether in a designated central surgical supply area or in a storage room with mixed clean and sterile supplies, storage techniques are protecting supplies from contamination and maintain the integrity of the packaging from damage. Failure to store medical and sterile supplies in a manner to protect from contamination will be scored according to Standard IC.02.02.01 EP 4.
For more information on how healthcare organizations can better manage commercially prepared sterile supplies, please contact The Joint Commission’s Standards Interpretation FAQ Page to receive answers to specific questions.
Diane Cullen, MSN, MBA, RN, CIC, is assistant director of standards interpretation at The Joint Commission.
References:
https://www.fda.gov/medical-devices/unique-device-identification-system-udi-system/udi-basics
https://www.fda.gov/medical-devices/device-labeling/quality-system-regulation-labeling-requirements
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/labeling-regulatory-requirements-medical-devices-fda-89-4203
https://www.fda.gov/news-events/fda-voices/using-symbols-convey-information-medical-device-labeling
https://www.jointcommission.org/standards/standard-faqs/ambulatory/environment-of-care-ec/000001275/
How Can We Connect the Dots Between a Missed Hand Hygiene Opportunity and Subsequent Patient Harm?
By Barbara DeBaun, MSN, RN, CIC
This column originally appeared in the May 2022 issue of Healthcare Hygiene magazine.
It’s been 175 years since Ignaz Semmelweis proposed the practice of washing hands with chlorinated lime solution as a strategy to prevent transmission of potentially lethal bacteria. The Centers for Disease Control and Prevention (CDC) issued its first guideline for handwashing in 1985 and the APIC guidelines followed 10 years later. Guidelines have been updated over the years with new knowledge and alternative approaches to hand hygiene such as alcohol-based hand sanitizer. The Joint Commission issued the first set of National Patient Safety Goals in 2002 and, not surprising, one of the goals was to reduce the risk of healthcare associated infections by complying with either the current CDC hand hygiene guidelines or the current World Health Organization (WHO) hand hygiene guidelines.
Infection preventionists are leading efforts worldwide to impact hand hygiene compliance in healthcare facilities. We oversee the hand hygiene observation programs, recruit observers, train them, analyze their findings, display data, and report findings to multiple committees and stakeholders. We conduct activities using black light technology to ‘make the invisible germs visible’ and do our best to find ways for fun and interactive activities. We find ways to provide reward and recognition when observing a good example of hand hygiene with every ounce of creativity. Some of us have established code phrases such as “Gel-in, gel out,” “Can I give you a hand?” “Dr. Hand is on the phone,” or even “Touchdown” for an observed hand hygiene and “Fumble” when observing a missed opportunity. These code phrases can be quite effective, but they might be brushed off or dismissed as a subtle suggestion, rather than a hard stop.
So, let’s shift gears for a moment. Think about all the safety checks we have in place to minimize the chance of a patient receiving the wrong type of blood or the wrong medication. It is estimated that in the United States alone, between 7,000 and 9,000 people die every year because of a medication error. Approximately 20 people in the U.S. die every year after receiving an incompatible transfusion of blood. In most circumstances, administration of incompatible blood results in an immediate and dramatically obvious error. The nurse who hung the blood will see the impact of the error quickly and connect the dots between the wrong blood and the patient harm. If a nurse administers a medication to a patient with a severe allergy or grabs the wrong concentration or heparin and delivers a much higher dose than indicated, the error will be obvious. The dots between the human error and the harm to the patient get connected.
But what happens if a healthcare provider fails to perform hand hygiene and touches a patient’s central line with contaminated hands? Might the patient develop a central line-associated bloodstream infection (CLABSI)? Very possibly. But the difference is the healthcare-associated infection will not be obvious immediately, such as with a blood transfusion reaction or a severe systemic allergic reaction. Even though the healthcare provider’s contaminated hands are a possible source of the CLABSI, the time delay between the breach and onset of infection is significant, therefore the dots don’t get connected.
So, how can we change the conversation and get better at not only seeing a hand hygiene failure as a human error, but to create a powerful peer-to-peer support system where staff welcome and appreciate a direct reminder to do the right thing for patient safety?
You might want to try some role playing that goes something like this. Approach a nurse and ask the following:
1. If I saw you about to hang the wrong blood on your patient, would you want me to stop you?
2. If I saw you about to give penicillin to a patient with a severe penicillin allergy, would you want me to stop you?
See how the nurse responds, but likely s/he will say “Yes” or “Absolutely” without missing a beat.
Next, ask the nurse:
1. If I saw you about to touch a patient without washing your hands, would you want me to stop you?
The response might be a little different. Some will respond with an immediate “Yes,” and others might hesitate a bit because this particular question may feel more personal or judgmental. The important outcome of this exercise is to create a dialogue and have the conversation that promotes ‘connecting the dots’ between a human error and patient harm.
Ultimately, we want our healthcare providers to view healthcare associated infections as preventable harms that are just as significant as those that result from medication or blood administration errors.
Go get those dots connected!
Barbara DeBaun, MSN, RN, CIC, is improvement advisor for Cynosure Health.
Best Practices in Sterile Processing to Reduce Surgical Site Infections
By Gail Horvath, MSN, RN, CNOR, CRCST, and Margaret Miller, BS, MT(ASCP) M, CIC, FAPIC
This column originally appeared in the April 2022 issue of Healthcare Hygiene magazine.
What are the most common contributing factors to surgical site infections (SSIs) in your organization? Certainly, sterile processing practices would make the list. It is reported that SSIs account for 20 percent of all hospital-acquired infections and that half may be preventable with implementation of evidence-based strategies.1 Having a robust sterile processing department (SPD) creates a strong first link in the chain of infection prevention, especially utilizing the following best practices.
Point of use care of instruments
Care and cleaning of surgical instruments is a shared responsibility between the SPD and the area where the instruments are used. Gross soil should be removed at the point of use to:
• Reduce the number of microorganisms on the item
• Reduce the nutrient material that might support microbial growth
• Reduce the potential for environmental contamination by aerosolization or spillage
• Minimize damage to devices from such substances as blood, saline, iodine, and radiological dyes.
Transport of instruments
Establish and implement standardized sterile processing procedures and measures for oversight of all aspects of processing and transport, including when transporting between facilities. When transporting instruments to the operating room (OR)/procedure area, contain sterile items in a closed system to protect items from contamination, damage, or tampering. When returning instruments to SPD post-procedure, contain contaminated items in a closed system and transport to the decontamination area as soon as possible.
If transporting instruments off-site, the facility must comply with applicable Department of Transportation and state regulations. Clean and contaminated items should be separated to prevent cross-contamination during transport. Transport vehicles that are loaded and ready for transport should not be left unattended in unsecured areas.
Instrument inspection
In SPD, use lighted magnification to inspect instruments. Test insulated equipment for current leakage
and remove defective instruments from service. Instruments should be thoroughly dry before assembly
and packaging.
In the OR, confirm the following prior to placing instruments on the sterile field:
• Integrators have turned
• Biological for the load was negative
• Integrity of the container was not compromised
• No holes were present in wrapped trays
• No visual bioburden or debris was present
Loaner instruments
Ensure vendors provide manufacturer instructions for use (IFUs) for instruments and that they are delivered with adequate time for onsite decontamination and sterilization prior to the scheduled case.
Water and steam quality and monitoring
Water quality is an important consideration in all stages of medical device reprocessing. Poor water and steam quality may damage surgical instruments. It is best practice to use critical water—water that is extensively treated by a multistep treatment process that usually includes a carbon bed, softening, deionization and/or reverse osmosis—for the final decontamination rinse and for steam generation. Routinely monitor water quality (bacteria, pH, chloride, hardness, conductivity, endotoxins) and share the results with infection prevention and control as well as SPD leadership.
Immediate use steam sterilization (IUSS)
Formerly called “flash sterilization,” IUSS is described by The Joint Commission as "the shortest possible time from the item being removed from the sterilizer to the aseptic transfer onto the sterile field." IUSS items are not intended to be stored for future use.
Acceptable conditions to use IUSS:
• The item will be used immediately
• Terminal sterilization is not an option
• The device manufacturer's written instructions for cleaning, cycle type, exposure times, temperature settings, and drying times (if recommended) are readily available and followed; and include instructions for IUSS
• The IUSS rigid sterilization container manufacturer's written IFUs are followed
• IUSS should not be used for mere convenience, or due to limited instruments or equipment for the number of cases/procedures performed.
Event-related sterility
Event-related sterility is based on the premise that items that have been properly decontaminated, cleaned, wrapped or containerized, stored, and handled will remain sterile indefinitely unless opened.
However, events that may affect the sterility of a package include, but are not limited to:
• Excessive handling that leads to seal breakage or loss of package integrity
• Compression during storage
• Moisture penetration
• Exposure to airborne or environmental contaminants
• Storage conditions where temperature is in excess of 75 degrees F (24 degrees C) and/or humidity is in excess
of 70 percent
• Packages are dropped
• Missing external indicator of sterility (e.g., autoclave tape)
• Internal integrators have not changed.
Environmental cleaning in sterile processing areas
Before work begins for the day, damp dust from top to bottom (sterilizers, workstations, counters, shelving). Daily terminal cleaning includes floors in all areas, workstations, sinks, pass-through window, and trash and linen receptacles.
In summary, SSIs are among the most preventable healthcare-associated infections and are a significant burden in patient morbidity, mortality, and costs. To ensure quality, we suggest auditing of key areas, such as IUSS rates, and if loaner instruments and implants are delivered soon enough for onsite decontamination and sterilization. Lastly, we recommend reviewing the recently published ANSI/AAMI ST91: 2021 Flexible and semi-rigid endoscope processing in health care facilities. This revision provides expanded guidance on point of use treatment, transport, leak testing, cleaning, high-level disinfection, liquid chemical sterilization, packaging, sterilization, and storage of flexible and semi-rigid endoscopes to ensure endoscopes are safe for patient use.
Gail Horvath, MSN, RN, CNOR, CRCST, is senior patient safety analyst and consultant with ECRI.
Margaret Miller, BS, MT(ASCP) M, CIC, FAPIC, is an infection preventionist with ECRI.
References:
1. Ban K, et al. American College of Surgeons/Surgical Infection Society: surgical site infection guidelines, 2016 update.
National Healthcare Safety Network Surgical Site Infection Event. CDC. 2022.
Societies Call for Significant Need to Increase Capacity Across the U.S. Healthcare System
By HHM staff
This column originally appeared in the March 2022 issue of Healthcare Hygiene magazine.
As the world enters the third year of the COVID-19 pandemic, the Association for Professionals in Infection Control and Epidemiology (APIC) is issuing an urgent call-to-action to shore up the nation’s infection prevention and control (IP&C) infrastructure.
Even before the pandemic, hospital IPC programs were underfunded and understaffed. The pandemic exacerbated those patient safety weaknesses, leaving healthcare facilities with insufficient capacity to prevent common, often deadly, healthcare-associated infections.
Published in February, APIC’s Between a Rock and a Hard Place: Recommendations for Balancing Patient Safety and Pandemic Response, provides an extensive set of strategies to increase the IP&C workforce, strengthen prevention programs, and build resiliency for future pandemics.
“APIC is issuing this call-to-action as we all recall the nightmare of extensive supply shortages and overworked healthcare workers,” says 2022 APIC president Linda Dickey, RN, MPH, CIC, FAPIC. “Especially troubling to APIC is how many preventable infections were transmitted inside hospitals during COVID because that resilience was not built into our healthcare system.”
In the report, APIC urges policymakers to allocate funding to build IPC surge capacity to ensure the continuity of safe patient care during a pandemic. The specific recommendations from the 66-page report include:
· Develop next-generation universal personal protection equipment (PPE) for a one-size-fits-all device to protect healthcare workers
· Normalize the use of masks by the public during outbreaks of infectious diseases, building trust among the American people of their effectiveness
· Address supply chain failures to ensure greater diversity in production locations and expanded ease of access
· Require that healthcare facilities include personnel with IP&C expertise on emergency response teams to ensure the safety of response practices
· Protect nursing home residents ensuring that each nursing home has at least one dedicated infection prevention expert on staff
· Build and implement IP&C surge capacity to ensure the continuity of safe patient care during a pandemic
· Increase capacity for testing and contact tracing to control disease spread during a pandemic
· Ensure rapid healthcare data collection and sharing to optimize strategies to prevent disease transmission
· Build vaccine confidence to combat misinformation and dissuade hesitancy
· Fund pandemic preparedness workforce capacity and training with incentives for universities to create a pathway to the infection prevention profession
In 2021 the Centers for Disease Control and Prevention (CDC) documented a sharp rise in healthcare-associated infections (HAIs), which had been steadily decreasing prior to the pandemic.
Because of the strain that the pandemic put on the entire healthcare system, central line-associated bloodstream infections (CLABSI), catheter-associated urinary tract infections (CAUTI), ventilator-associated events (VAE), and methicillin-resistant Staphylococcus aureus (MRSA) have increased exponentially.
After years of steady reductions in healthcare-associated infections, significantly higher rates of four out of six routinely tracked infections were observed in U.S. hospitals, according to a CDC analysis of data from the National Healthcare Safety Network (NHSN) published in Infection Control & Hospital Epidemiology. Increases were attributed to factors related to the COVID-19 pandemic, including more and sicker patients requiring more frequent and longer use of catheters and ventilators as well as staffing and supply challenges.
“COVID-19 created a perfect storm for antibiotic resistance and healthcare-associated infections in healthcare settings. Prior to the pandemic, public health — in partnership with hospitals — successfully drove down these infections for several years across U.S. hospitals,” said Arjun Srinivasan, MD, CDC’s associate director of Healthcare Associated Infection Prevention Programs. “Strengthening infection prevention and control capacities works. This information emphasizes the importance of building stronger, deeper and broader infection control resources throughout healthcare that will not only improve our ability to protect patients in future pandemics but will also improve patient care every day.”
For this analysis, researchers used data collected through NHSN, the nation’s largest healthcare-associated infection surveillance system, which is used by nearly all U.S. hospitals to fulfill local, state, or federal infection reporting requirements. Major increases were found in 2020 compared to 2019 in four serious infection types: central line-associated bloodstream infections, catheter-associated urinary tract infections, ventilator-associated events, and antibiotic resistant staph infections. The largest increases were bloodstream infections associated with central line catheters that are inserted into large blood vessels to provide medication and other fluids over long periods. Rates of central line infections were 46 percent to 47 percent higher in the third and fourth quarters of 2020 compared to 2019.
With dramatic increases in the frequency and duration of ventilator use, rates of ventilator-associated infections increase by 45 percent in the fourth quarter of 2020 compared to 2019. The CDC analysis found sharp increases in standardized infection rates, indicating that the increases were not simply a reflection of more devices being used.
“Infection control practices in COVID-19 wards often adapted to shortages of personal protective equipment, responded to fear of healthcare personnel, and did not always lend themselves to better infection prevention,” said Tara N. Palmore, MD, and David K. Henderson, MD, of the National Institutes of Health, in an editorial that accompanied the study. “The success of the previous several years, with steady declines in rates of these (healthcare-associated) and device-related infections, further accentuated the upswings that occurred in 2020.”
The study found that two other types of infection remained steady or declined during COVID-19. Surgical-site infections rates did not increase as fewer elective surgeries were performed, largely in operating rooms with uninterrupted infection control processes that were separate from COVID wards. In addition, no increase was found in Clostridioides difficile. The study said lower rates of C. diff may be a result of increased focus on hand hygiene, environmental cleaning, patient isolation, and use of personal protective equipment.
“Basic infection control practices must be hardwired into practice so that they are less vulnerable when the health care system is stressed,” the editorial concluded, “One approach might be to designate clinical staff to be added to the hospital epidemiology team to allow for rapid expansion of effort to support a pandemic response.”
At the time this study was published in August 2021, APIC then-president Ann Marie Pettis, BSN, RN, CIC, FAPIC, had called this CDC data “quite troubling and must serve as a call to action.” She added, “As a nation we must take significant efforts to bolster our infection prevention and control programs throughout the healthcare continuum. The report highlights the need for healthcare facilities to strengthen their infection prevention programs and support them with adequate resources so that they can handle emerging threats to public health, while at the same time ensuring that gains made in combatting HAIs are not lost.”
Pettis continued, “The unfortunate reality is that in one year we lost nearly a decade of progress against HAIs like central line-associated bloodstream infections, catheter-associated urinary tract infections, MRSA, and ventilator-associated events. We now have an opportunity to use this data and take action to invest in our public health infrastructure, expand our nation’s infection prevention and control workforce, and put infection preventionists – specialists who are trained and certified to prevent infections — at the center of these efforts. APIC is calling on healthcare facilities to assess their infection prevention programs by looking at the care and services they provide and determining the appropriate level of personnel and resources necessary to protect patients and healthcare workers. Facility-wide infection prevention programs are critical and require adequately staffed, trained, and resourced infection prevention and control departments. APIC also calls on federal and state governments to provide funding to help support healthcare facilities across the continuum of care to ensure that there is adequate surge capacity so that infection prevention and control measures will endure when stressed by future pandemics and disease outbreaks.”
As we know, HAIs can often be prevented through careful monitoring and safety protocols overseen by infection preventionists, but only when there are sufficient resources and trained personnel in place to support these efforts.
“For the U.S. to create a safer, more resilient healthcare system, policymakers should make the substantial investments recommended by the hands-on infection prevention experts who had a unique vantage point as the pandemic overwhelmed hospitals, nursing homes and clinics nationwide,” says Dickey.
“We need to build capacity so we can surge when we need to,” says APIC’s CEO Devin Jopp, EdD, MS. “I won’t sugarcoat it; fortifying our nation’s IPC infrastructure isn’t free, but the cost of ill-preparedness in lives and dollars is incalculable.”
To help healthcare facilities assess their IP&C capacity, APIC is launching a new campaign called HAI Fast Forward: Accelerating HAI Prevention. It will include a series of initiatives to help organizations make headway in reducing their HAIs back to pre-pandemic levels.
Other organizations are responding to the call for addressing post-pandemic capacity needs. The Society for Healthcare Epidemiology of America (SHEA) says it agrees with the call to rebuild a resilient patient safety culture in U.S. healthcare institutions that came in late February from the Centers for Disease Control and Prevention (CDC) and the Centers for Medicare and Medicaid Services in The New England Journal of Medicine.
As SHEA explains, "The pandemic response has led to burnout and staffing shortages, which have compounded the challenges associated with maintaining culture of safety in healthcare settings. Addressing these realities and creating a patient safety culture that values the critical role of healthcare personnel is essential to building a stronger future for healthcare-associated infection prevention. We are now faced with a pivotal opportunity for healthcare leaders to take lessons learned from the COVID-19 pandemic to rebuild better systems of care for healthcare-associated infections that can be managed during outbreaks and other crises impacting healthcare.”
SHEA has been updating education and expert guidance to incorporate lessons learned from COVID-19 into the next generation of infection prevention and antibiotic stewardship programs. We look forward to working across government agencies, healthcare systems and patient advocacy groups to refocus on healthcare-associated infection prevention with an emphasis on more sustainable responses post-pandemic."
Also in a statement issued in February, APIC said it was calling for healthcare organizations to assess their infection prevention capacity and strengthen prevention programs by adding personnel, resources, and training to support both infection prevention and surge capacity for future pandemics.
In the statement, 2022 APIC president Linda Dickey, RN, MPH, CIC, FAPIC, had stated, “The CDC reports that healthcare-associated infections increased significantly during 2020, reversing years of progress. The current pandemic illustrates that our healthcare facilities are not where they need to be in terms of infection prevention and patient safety. Facility-wide infection prevention programs are critical and require adequately staffed, trained, and resourced infection prevention and control departments. We must bolster our infection prevention and control staff capacity in our system of healthcare to simultaneously manage HAIs and future pandemics.”
Dickey added, “This is not the time to ask infection prevention teams to do more with less. It is the time for investment in the infection prevention and control infrastructure in our nation’s healthcare facilities so that basic infection control practices can be hardwired into processes of care. Our hospitals need more infection preventionists. Infection preventionists serve as a critical line of defense in preventing and responding to infections and integrating evidence-based strategies to limit their spread. It’s essential that hospitals, clinics, and long-term care facilities have enough infection preventionists to train staff and monitor safety protocols so that dangerous pathogens do not spread and lead to infection."
She continued, “APIC calls on federal and state governments to provide funding to help support healthcare facilities across the continuum of care to ensure that there is adequate surge capacity so that infection prevention and control measures will endure when stressed by future pandemics and disease outbreaks. We can’t let the lessons learned from COVID-19 go to waste. Building stronger infection prevention programs throughout healthcare will not only improve our ability to protect the public during future pandemics but will simultaneously improve patient safety. To help healthcare facilities assess their infection prevention capacity, APIC is launching a new campaign called HAI Fast Forward: Accelerating HAI Prevention, which will include a series of webinars and other resources available to help organizations make headway in reducing their HAIs back to pre-pandemic levels.”
References:
Palmore TN and Henderson DK. Healthcare-Associated Infections in the Time of Pandemic COVID-19. Infection Control & Hospital Epidemiology. Web (Aug. 25, 2021).
Weiner-Lastinger LM, et al. The impact of COVID-19 on healthcare-associated infections in 2020; A summary of data reported to the National Healthcare Safety Network. Infection Control & Hospital Epidemiology. Web (Aug. 25, 2021).
Urine Culture Practices: Playing Better Defense
By Barbara DeBaun, MSN, RN, CIC
This column originally appeared in the February 2022 issue of Healthcare Hygiene magazine.
As an infection preventionist, it is not uncommon to review the medical record of a patient who developed a hospital-onset urinary tract infection and then ask the question, “why did they culture this?” We might see a urine culture result in a patient that had no obvious source of a urinary tract infection (UTI). Or one in a patient who was ‘pan-cultured’ when appearing septic even though the source of the sepsis was obviously something other than the urinary tract. It is also not unusual for a clinician to order a urine culture on a patient who is clearly at the end of life, yet all sources of fluids and body substances were cultured at the bitter end even though the results were not going to be acted upon.
Hospital electronic medical records have made it easy to order a urine culture. It can be as simple as clicking a box.
When a patient’s urine culture is reported as positive, it may be difficult for the clinician to ignore it. The clinician will weigh the risks and benefits of treating vs not treating. If the culture result suggests true infection, treatment is indicated. However, if the culture is interpreted as positive despite the patient lacking symptoms of a UTI, the patient will receive unnecessary antibiotics. We all know how that can end.
Culturing patients that do not have clinical symptoms or a potential to be treated for a urinary tract infection is an avoidable medical error. Unnecessary treatment with antibiotics harms patients. It can result in drug-drug interactions, C. difficile infection, multidrug-resistant bacteria, renal damage, allergies, increased length of stay and other complications.
Multiple myths have perpetuated the knee-jerk ordering of urine cultures in the absence of clinical indications. Some myth-busting facts are as follows:
- An abnormal urinalysis does not necessarily indicate a UTI. Asymptomatic bacteriuria is quite common, and we also know that collection and transportation of urine specimens can be problematic when not done correctly or timely
- Smelly, cloudy urine is a common finding in patients who are dehydrated.
- Elderly or otherwise deconditioned patients can have asymptomatic bacteriuria, therefore symptoms such as weakness, fatigue or mental status changes are not necessarily a reason to suspect UTI
- Screening patients with NO symptoms of a UTI is a recipe for failure and patient harm. We should screen patients for dietary and hydration habits and address those issues before assuming the patient has a UTI when dehydration is much more likely to be the reason for the concentrated, smelly urine
How do we make it easier to do the right thing, and harder to do the wrong thing? Diagnostic stewardship or leveraging the clinical laboratory to improve antimicrobial stewardship is key. Our microbiology partners are highly trained to report what they see. If white blood cells are observed in the urinalysis, these will be reported. Unfortunately, white blood cells in the urine (pyuria) can’t differentiate asymptomatic bacteriuria from a true urinary tract infection. So, there is the conundrum.
Keys to success include:
- Ordering: Test urine only when clinical symptoms suggest a UTI or if testing syncs with current guidance to screen patients scheduled for urologic surgery or those who are pregnant
- Collection: Go to Gemba and observe how and why urine specimens are being collected; we often make assumptions about how things are done and there is no better way to know the truth than to go look.
- Processing: Determine criteria for advancing a urinalysis to culture based upon criteria established by your facility
A recent study by Dougherty, et al, reported the impact of a urine culture s standardization program that included order indications and urinalysis (U/A) with reflexive culture. The team determined that 64 percent of urine cultures ordered using the reflexive test did not reflex to culture by U/A criteria.
- Reporting: Provide clear guidance to clinicians to make it easier for them to make the best decision (e.g., to not treat a patient who has an unlikely probability of having a UTI). Clinicians want to do the right thing, but they are easily tempted to treat a patient because a positive test is hard to ignore.
So, perhaps we should think of diagnostic stewardship using a sports analogy. Soccer teams have five defensive players. The sweeper, fullback, center back and wing back are tasked with preventing the soccer ball from entering the goal (i.e., avoid sending urine specimens that don’t make clinical sense). The goalie is the person who can put a stop to the score when the other four defensive players can’t get the job done (i.e., prevent the processing and reporting of a urine culture that has a low probability of being ‘real’). Ideally, processes need to be in place to prevent urine specimens from being collected and sent to the laboratory in the first place. When they are clinically indicated, do it right. But we know that sometimes our defense fails us, and we need our goalie (i.e., urinalysis with reflexive culture) to prevent a score for the opposing team.
It takes a team whether it’s a sport or healthcare, so explore strategies for practice change that make it easy to do the right thing, and hard to do the wrong thing.
Barbara DeBaun, MSN, RN, CIC, is improvement advisor for Cynosure Health, where she provides vision and leadership in the development, implementation and facilitation of infection prevention and quality improvement initiatives for healthcare organizations. She has 40-plus years of experience in infection prevention and quality improvement.
Reference: Dougherty DF, Rickwa J, Guy D, Keesee K, Martin BJ, Smith J, Talbot TR.Reducing inappropriate urine cultures through a culture standardization program. Am J Infect Control 2020;48:656-662.
Ensuring Proper Selection of Disposable Medical Protective Gowns
By Karen Haberland
This column originally appeared in the January 2022 issue of Healthcare Hygiene magazine.
Medical protective gowns are intended to protect the wearer from potentially infectious solids, liquids, or airborne particulate. Gown wearers—which can include healthcare workers, non-clinical personnel, visitors, and others—can be put at risk of cross-contamination if the wrong type of gown is purchased and worn for the intended application, or if the gown does not provide the level of protection that it claims.
Selecting the appropriate gown for any given application, however, is not a simple task.
The type of gown worn depends on several factors, including the clinical role, patient diagnosis, required isolation level per hospital protocol, type of treatment, etc. For example, gowns intended for surgical purposes may focus a high degree of fluid protection in the front and arms of the gown, while a gown intended for isolation with a risk of infectious airborne particulate would need 360-degree coverage.
There is a vast array of options: from fluid impervious, full coverage surgical gowns to moderately protective isolation gowns to low protection cover gowns and many in-between. Standards define the criteria for some – but not all – gown types. The Advancement of Medical Instrumentation (AAMI)’s PB70 standard outlines specifications for isolation and surgical gown fluid resistance levels (see Table 1). ASTM International’s F3352 and F2407 also define additional specifications regarding textile strength and breathability for isolation and surgical gowns, respectively.
Unfortunately, these standards are considered voluntary and are not strictly enforced for most gowns. This has led to the establishment of so-called cover or protective gowns, which may or may not offer the amount of coverage required of an isolation gown and may not be tested for fluid barrier performance. While these may offer sufficient protection for many activities, in-house review is necessary to ensure material strength and fluid barrier protection is equal to the task.
Furthermore, the nomenclature used by gown suppliers to designate the gown type or protection level is not consistent. Terms may be used interchangeably, or in a manner that does not align with how they are defined in the standards. For example, product literature may describe a product as an "isolation gown" even though it does not meet the AAMI PB70 requirements for isolation gowns, such as providing 360° coverage from neck to knees and at least minimal resistance to water spray (AAMI Level 1). The imprecise use of terms in marketing literature and lack of detailed specifications can make it difficult for purchasers to know the level of barrier protection that a gown will provide.
In a review of top-selling disposable gowns, ECRI has also noted that the marketing literature for many lack fluid barrier level claims, or claim a product is an isolation gown when it offers no back coverage. There is concern that these popular gowns may be worn in a higher risk environment than they can withstand, as they offer less than full coverage and unknown protectiveness. Thus, ECRI has recently begun to test a small sample of disposable isolation gowns. Preliminary findings suggest that some may not meet their claimed AAMI fluid barrier level. We hope to publish our findings in early 2022.
ECRI recommends that facilities gain a greater understanding of the properties of the various types of gowns, and stock the right gown for each procedure based in the risk of exposure. Remember that most gowns are not fluid impervious and are not tested against blood or bodily fluids. Also note the risk for airborne contaminants or the likelihood that the user may bump into equipment or turn his or her back on a patient, which may necessitate a full coverage gown over one with an open back.
There is no “one gown” that works for all a facility’s needs. Consider the following when selecting each type of gown:
• Disposable or Reusable
o Perform a spend analysis to determine which option is more economical for your facility.
o Consider storage area. Laundered reusable gowns require more space.
o Review the number of allowable washing and/or drying cycles. Manufacturers must test that barrier protectiveness does not degrade over time. Facilities must also plan for tracking and removal of old gowns.
o Reusable materials may be more durable for long-term use but may also be less breathable and hence uncomfortable to wear for long periods of time.
• Coverage
o Full coverage is necessary for activities with a risk of airborne contamination.
o Partial coverage may be sufficient for lower-risk tasks or those when the user’s back remains facing away from the patient.
• Fluid Barrier Level
o Choose the AAMI barrier protection level that best matches the exposure risk level of each procedure.
o If the manufacturer does not claim a fluid barrier level, use only for procedures with minimal risk of fluid exposure until tested for performance.
• Sizing
o One-size-fits-all is not adequate for all body types. Stock multiple sizes to ensure proper coverage without cumbersome excess for both petite and larger body types.
• Vetting Suppliers
o Fully vet all new suppliers prior to purchase. Consider whether they are new to the industry, or if they have a long history.
o Request product specifications and a list of standards to which the gowns comply.
o Request gown testing data to confirm barrier protectiveness levels.
o If possible, evaluate fluid barrier protectiveness prior to use.
• Proper Use
o Ensure personnel are trained in appropriate donning and doffing procedures, including properly securing both waist and neck fasteners to prevent the gown from gaping open.
o Remove gowns with care, per manufacturer’s instructions, to ensure clothing does not become contaminated.
While they may not garner as much attention as masks, gowns are a critical component of PPE and play an important role in reducing cross-contamination between patients and healthcare workers. It is crucial that facilities ensure staff is equipped with the knowledge and clothing to remain safe and healthy.
Karen Haberland, MS, is senior project officer, device evaluation, at ECRI.
References:
American National Standards Institute/Association for the Advancement of Medical Instrumentation (ANSI/AAMI). Liquid barrier performance and classification of protective apparel and drapes intended for use in healthcare facilities. ANSI/AAMI PB70:2012.
ASTM International. Standard Specification for Isolation Gowns Intended for Use in Healthcare Facilities. ASTM F3352-2019.
ASTM International. Standard Specification for Surgical Gowns Intended for Use in Healthcare Facilities. ASTM F2407-20.
Kilinc Balci FS. Isolation gowns in health care settings: laboratory studies, regulations and standards, and potential barriers of gown selection and use. Am J Infect Control 2016 Jan;44(1):104-11. Available from: https://www.sciencedirect.com/science/article/pii/S0196655315008470?via%3Dihub#bib81.
ECRI. Medical Protective Gowns: Key Features and Guidance for Selection [ECRI Guidance]. Device Evaluation 2021 Aug 8. Available from: https://www.ecri.org/components/HDJournal/Pages/Medical-Protective-Gowns-Guidance-for-Selection.aspx.
Use of isolation gowns purchased from non-traditional manufacturers without independent lab validation may put healthcare workers at risk for blood and fluid exposure [ECRI Exclusive Hazard Report]. Alerts Guide 2020 Nov 5. Accession No. H0650. Available from: https://alerts.ecri.org/alerts-search/view/details/1644891.