Five New Insights in the Fight Against COVID-19

Percentage of laboratory time using cadaver, plastic, and other teaching modalities before and during Covid-19 by academic program (n = 67; professional health, n = 26; medicine, n = 30; undergraduate, n = 11). Cadaver includes dissection and prosection; plastic includes plastic models and plastinated specimens. * Percent time using cadaver, plastic, and/or "other" was significantly different before and during Covid-19 (P ? 0.045). ^ Percent time using cadavers was significantly different across programs before Covid-19 (Kruskal-Wallis test, P = 0.01). Dunn post-hoc analysis showed that cadaver usage was significantly greater in the professional health vs. medical (P = 0.025) and undergraduate (P = 0.001) programs. † Percent time using "other" resources was significantly different across programs before Covid-19 (Kruskal-Wallis test, p = 0.01). Dunn post-hoc analysis showed that "other" usage was significantly less in the professional health vs. undergraduate (P = 0.048) programs. Courtesy of Harmon, et al.

Scientists from around the world are gathering to share the latest research at the forefront of biology during the Experimental Biology (EB) 2021 meeting. Many sessions focus on the year's most pressing priorities in bioscience: COVID-19 and the virus that causes it, SARS-CoV-2. Here are five highlights:

Legacy of COVID-19 in blood vessels may raise risk of heart disease

A study from the Medical College of Wisconsin suggests COVID-19 could cause long-term problems with the functioning of blood vessels, potentially increasing the risk of heart disease. Scientists examined arterioles, small branches of the cardiovascular system, in tissue samples from 14 people who had recovered from COVID-19 and 19 who had never had COVID-19. Arterioles regulate the flow of oxygen-rich blood to tissues by widening (dilating) and narrowing according to the body's needs at each moment. When exposed to stimuli (like chemicals or flow) that cause blood vessels to dilate, the arterioles from COVID-19 patients did not widen nearly as much as those from people without COVID-19. This effect was attributed to impaired functioning of the endothelium, the lining of the blood vessels. The effect was most pronounced in samples from people who had COVID-19 less than three months earlier; endothelium functioning was still impaired but closer to normal by eight months after infection. Over time, endothelial dysfunction in the blood vessels can lead to several forms of heart disease.

Yoshinori Nishijima will present this research online April 29.

Promising leads in the search for COVID-19 treatments

While vaccines are critical to curbing the COVID-19 pandemic, there is still a need for better treatments to improve the outlook for those who become infected. Research from the University of Oklahoma Health Sciences Center suggests drugs that inhibit a key enzyme in the SARS-CoV-2 virus could offer promising leads for an antiviral treatment. In experiments using cell cultures, the researchers found that three naturally occurring compounds significantly reduced the activity of the SARS-CoV-2 main protease, an enzyme the virus uses to replicate. The research team was able to trace how two of the compounds, phebestin and probestin, inhibit the main protease at the molecular level. They also found that these compounds did not harm mouse cells from the lining of the lungs, a test used to screen for safety concerns associated with delivering medicines through the nose. Based on these findings, the researchers say the compounds, which are members of a class of molecules called peptidic ?-hydroxy amides, warrant further study as potential antiviral drugs for COVID-19.

Nagendra Yarla will present this research online.

Molecules found in stem cells could calm COVID-19 cytokine storm

Treatment options are currently limited for patients with COVID-19 who suffer an excessive immune response known as a cytokine storm, which causes life-threatening damage to organs and tissues. Research led by the Houston Methodist Research Institute demonstrates that stem cells isolated from amniotic fluid contain several molecules that might be able to help counter a cytokine storm. Unlike embryonic stem cells, these cells are routinely collected to test amniotic fluid during prenatal diagnosis, without harm to the mother or fetus. Researchers found that the amniotic stem cells contained molecules involved in communicating with immune cells, regulating immunity and inflammation, protecting and repairing the lining of the lungs and maintaining a healthy heart. The study suggests mesenchymal stem cells from amniotic fluid, which have previously been explored as a therapy for other conditions, could offer a new option for treating the severe and chronic inflammation resulting from COVID-19 infection.

Salvatore Vaiasicca will present this research online April 28.

How COVID-19 changed practices for science education

How did science educators and students adjust to constraints on in-person learning during the COVID-19 pandemic? A survey of educators in anatomy -- a field with a strong emphasis on in-person, hands-on learning -- sheds light on changing practices. Researchers from 10 universities across the U.S. and Canada conducted two surveys of anatomy educators in 2020. The first survey collected 67 responses from May through August, and the second collected 191 responses from August to December, reflecting the summer and fall terms, respectively. Respondents reported a drastic reduction of in-person lectures while remote instruction increased; they also reduced the use of cadavers and increased the use of other laboratory teaching materials, such as digital and virtual anatomical technology. These changes were most pronounced early in the pandemic. During the final months of 2020, respondents reported greater use of in-person teaching and use of cadavers, though these practices were still diminished and varied by institution compared with prepandemic levels. The researchers suggest further study can help elucidate whether these trends may represent long-term changes for anatomy education.

Derek Harmon will present this research online.

EB 2021 is the premiere annual meeting of five scientific societies to be held online April 27-30, 2021.

7 Comments on "Five New Insights in the Fight Against COVID-19"

  1. The blog was how do i say it… relevant, finally something that helped me. Thanks

  2. I got good info from your blog

  3. Saved as a favorite, I really like your blog!

  4. Hi , I do believe this is an excellent blog. I stumbled upon it on Yahoo , i will come back once again. Money and freedom is the best way to change, may you be rich and help other people.

  5. Those are yours alright! . We at least need to get these people stealing images to start blogging! They probably just did a image search and grabbed them. They look good though!

  6. Those are yours alright! . We at least need to get these people stealing images to start blogging! They probably just did a image search and grabbed them. They look good though!

  7. This blog is definitely rather handy since I’m at the moment creating an internet floral website – although I am only starting out therefore it’s really fairly small, nothing like this site. Can link to a few of the posts here as they are quite. Thanks much. Zoey Olsen

Leave a comment

Your email address will not be published.